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Objective: Buffalo (Bubalus bubalis) is an important livestock species raised for meat, milk, and
draught purposes. In Indonesia, buffaloes with rare coat colors (e.g., white, striped) hold cultural
significance, especially in Toraja funeral traditions. This study aimed to identify mutation sites in
the exon 1 region (822 bp) of the Melanocortin 1 Receptor (MCI1R) gene in buffaloes using forward
sequencing.

Materials and Methods: Four Toraya buffaloes (1 white, 2 striped, and 1 black) and two black
Murrah buffaloes were used as experimental animals. In addition, seven MCI1R gene sequences
from different buffalo breeds (Murrah x Dehong (light grey), Dehong (white and dark grey),
Murrah (black), Jafarabadi (black), and Surti (brown)) were obtained from the NCBI database for
comparative analysis.

Results: A total of five nucleotide variation sites were identified in the experimental animals,
including three novel mutations (c.26M, c.49Y, and c.50R) and two previously reported mutations
(c.170R and c.244K). Among these, c.50R was identified as a synonymous mutation, while the
remaining mutations were non-synonymous and predicted to affect the amino acid sequence of
the MC1R protein. Notably, all three novel mutation sites were consistently present in all studied
Toraya and Murrah buffaloes, suggesting shared genetic variants across phenotypically distinct
populations. Structural prediction analysis indicated that these mutations could potentially alter
the conformation and function of the MC1R protein.

Conclusion: The identification of three novel mutations in the MCIR gene enhances our under-
standing of coat color variation and genetic diversity in Indonesian buffalo populations, particu-
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larly those of cultural and economic significance.

Introduction

Buffalo (Bubalus bubalis) is an important livestock species
for various purposes, including meat and milk produc-
tion, as well as draught resources. Despite this, the buffalo
with a rare coat color was used in the funeral tradition by
the Toraja ethnic group in Indonesia [1]. In this tradition,
the Toraja buffaloes must be sacrificed to accompany the
funeral procession. Toraya buffaloes exhibit a variety of
coat color types, including white, black, and striped [2].
Currently, the Toraya buffalo has been designated as one
of the Indonesian native buffalo breeds, as per the decision
of the Indonesian Ministry of Agriculture No. 2845 /Kpts/

LB430/8/2012 [2]. According to the mitochondrial D-loop
gene, the Toraya striped buffalo is classified in a differ-
ent cluster and separated from buffalo populations from
Sumatra, Java, and West Nusa Tenggara [3].

Previously, Yusnizar et al. [4] reported a novel mutation
site of ¢.328Y in the exon 3 region of the Microphthalmia-
associated transcription factor (MITF) gene that is asso-
ciated with white-spotted coat color in Toraya buffalo.
Nonetheless, many studies reported that Melanocortin 1
receptor (MC1R) gene also influences the coat color pat-
terns in buffalo [5,6]. In contrast, Chen et al. [7] and Jakaria
et al. [8] reported no association between the MCIR gene
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polymorphism and coat color trait in yak (Bos grunniens)
and Bali cattle (Bos javanicus), respectively. In cattle (Bos
taurus), the MCIR gene is located on chromosome 18 along
1751 bp (GenBank: NC_037345.1) with an exon along 954
bp [9]. The MCIR gene plays a vital role in melanogenesis
and determines the coat color of mammals [10]. The MCIR
gene encodes a melanocytic Gs protein-coupled receptor
that is integral to the regulation of skin pigmentation, UV
radiation response, and melanoma susceptibility. This
gene exhibits high polymorphism, and loss-of-function
variants are correlated with phenotypes characterized by
fair skin, heightened UV sensitivity, and an elevated risk of
melanoma. The underlying mechanisms for these associa-
tions involve defective epidermal melanization and com-
promised DNA repair processes [11]. Proteins are intricate
macromolecules that play essential roles in nearly all
critical biological processes within an organism, such as
metabolism, molecular transport, signal transduction, and
various other functions [12].

Unfortunately, the detection of the MCIR gene poly-
morphism among Indonesian buffaloes with different coat
colors has not been reported. The current study aimed to
detect mutation sites in the bubaline MC1R gene and their
effect on the protein structure of MCIR.

Materials and Methods
Ethical approval

The Animal Ethics Committee of the National Research and
Innovation Agency (BRIN) has approved this study with
certificate number 093 /KE.02/SK/05/2023, regarding the
use of animal models and experimental design.

Animals and DNA extraction

Four Toraya buffaloes (1 white, 2 striped, and 1 black) and
two black Murrah buffaloes were used for the experimen-
tal animals in the present study (Fig. 1). The Toraya buf-
faloes (swamp type) in this study originated from Toraja
Regency. While the black Murrah buffaloes (river type)
were used as control animals in the present study and orig-
inated from the National Artificial Insemination Center
(NAIC) in Lembang, West Java. Therefore, 5 ml of blood
samples were collected from the jugular vein of each ani-
mal. The DNA extraction was performed using a genomic
DNA extraction kit (Geneaid, Taiwan) and stored at —20°C
for further analysis.

PCR and sequencing

The amplification of the bubaline MCIR gene (exon 1)
was performed in a total volume of 30 ul consisting of 9
ul of DNA template, 0.6 ul of each primer, 15 pl of GoTaq
Green PCR Master Mix (Thermo Scientific, USA), and 4.8 pl
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of nuclease-free water. An 822 bp of MC1R gene sequence
(GenBank: AF445641) was amplified using the primer
pairs of Forward: 5’- CAT CCC TGA CGG GCT CTT TCT C -3’
and Reverse: 5’- AGC ACC TCT TGG AGC GTC TTC C -3’ [5].
The bubaline MCIR gene amplification was performed in
a thermocycler machine (Applied Biosystem, USA) with
the PCR program consisting of 1 cycle of pre-denaturation
at 95°C for 2 min, followed by 35 cycles of denaturation
at 95°C for 1 min and 30 sec, annealing at 60°C for 1 min,
initial extension at 72°C for 1 min, and final extension at
72°C for 5 min. Electrophoresis was performed using a 1%
agarose gel stained with 2 pl of SYBR Safe DNA Gel Stain
(Invitrogen, USA) for 30 min at 110 volts. The DNA visu-
alization was captured using the G-box Documentation
System (Syngene, UK). The sequencing analysis was
performed by 1st BASE Laboratory Service (Malaysia).
Therefore, the alignment analysis was performed using
the BioEdit package to detect mutation sites in the target
sequence [13].

Protein sequence alignment

Sequence alignment and visualization of conserved amino
acids were performed using the COBALT constraint-based
multiple protein alignment tool (https://www.ncbinlm.
nih.gov/tools/cobalt/re_cobalt.cgi) [14]. The universal
protein resource (Uniprot) (http://www.uniprot.org/
align/) [15], utilizing the default parameters for both tools
[16,17].

MCIR protein structures

The three-dimensional structures of both the wild-type and
mutant MCIR proteins were generated using AlphaFold3
(https://deepmind.google/technologies/alphafold/).
These modelled structures were then utilized for compre-
hensive structural analysis, and their structural quality
was analyzed by using PDBsum (https://www.ebi.ac.uk/
thornton-srv/databases/pdbsum/). Then, it was analyzed
for its secondary structure details [18].

Results and Discussion

Along 822 bp of the amplicons, primer pairs were
used according to the B. taurus MCIR gene (GenBank:
AF445641), as shown in Figure 2. Therefore, five mutation
sites were detected in the target sequence of the bubaline
MCIR gene, i.e., c.26M, c.49Y, c.50R, c.170R, and c.244K
(Fig. 3). Interestingly, three mutation sites of c.26M, c.49Y,
and c.50R have not been reported in many previous stud-
ies. While two mutation sites of c.170R and c.244K are two
common mutation sites in the bubaline MCIR that also
occurred in Murrah cross buffalo (GenBank: GQ359897),
as shown in Table 1. In addition, the mutation site of
c.26M was identified as the genetic marker to discriminate

1346


https://www.ncbi.nlm.nih.gov/nuccore/NC_037345.1
https://www.ncbi.nlm.nih.gov/nuccore/AF445641
https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi
https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi
http://www.uniprot.org/align/
http://www.uniprot.org/align/
https://deepmind.google/technologies/alphafold/
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
https://www.ncbi.nlm.nih.gov/nuccore/AF445641
https://www.ncbi.nlm.nih.gov/nuccore/GQ359897

1250 bp
1000 bp
750 bp

500 bp

250 bp

822 bp

Figure 2. Amplification of the bubaline MC1R gene. Line 1-6: DNA sample; M: DNA ladder 250 bp.
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4950 170 244
GCCATCACCALG .GGCCAGTGT CCATGGTGT
TG G T

Figure 3. Detection of mutation sites in the MCIR gene.

Table 1. Detection of mutation sites in the MCIR gene of Toraya striped buffaloes.

Position* (exon 1)

Buffalo GenBank Coat color Origin Reference
26 49 50 170 244

Murrah x Dehong GQ359897 Light grey China A C G R K [5]
Dehong GQ359954 Dark grey China A C G G G [5]
Dehong GQ359870 White China A C G G G [5]
Murrah MN687828 Black India A C G A T [19]
Jafarabadi MF421425 Black India A C G A T [9]

Nili Ravi MF421522 Black India A C G A T [9]

Surti MF421443 Brown India A C G A T [9]
Toraya 1 LC844121 White Indonesia C Y R R K Present study
Toraya 2 LC844122 Striped Indonesia C C R R K Present study
Toraya 3 LC844123 Black Indonesia C Y R R K Present study
Toraya 4 LC844124 Striped Indonesia C Y R R K Present study
Murrah 1 LC844125 Black Australia C Y R R K Present study
Murrah 2 LC844126 Black Australia C Y R R K Present study

*Nucleotide position at GenBank: GQ359897; Y = pyrimidines (C or T); R = purines (A or G); K = keto bases (G or T)

between Toraya/Australian Murrah and buffaloes from
China and India. Regarding the common mutation sites
(c.170R/c.244K), buffalo coat colors can be associated with
specific genotypes: EBS/EBS or GG/GG (grey color), EBR/
EBR or AA/TT (black, white, and brown colors), and EBRS/
EBRS or AA/GG (grey color) genotypes [5,6]. In Toraya and
Murrah buffaloes, both loci were monomorphic, exhibiting
heterozygous alleles. However, the novel mutation of c.49Y
was found to be polymorphic in Toraya buffaloes. Notably,
a genetic marker associated with coat colors in Toraya buf-
faloes was not detected in the MCIR gene. Although syn-
onymous mutations do not alter the amino acid sequence,
they may affect gene expression or mRNA stability. In this
study, synonymous mutations such as c.26M may serve as
molecular markers rather than causal mutations for coat
color. Further investigation with larger populations is nec-
essary to confirm the consistency and reliability of these
phenotypic markers.
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The five identified mutation sites in the bubaline MC1R
gene are predicted to result in alterations to four amino
acids, i.e.,, p.N1H (c.26M), p.A9T (c.50R), p.S49G (c.170R),
and p.I73M (c.244K), as shown in (Fig. 4). The sequence
alignment of the bubaline MCIR gene identifies four dis-
tinct amino acid substitutions between the wild-type and
mutant variants, marked by arrows at positions 10, 20, 40,
and 70. These point mutations involve the replacement
of native amino acids with different residues, potentially
inducing significant alterations in the three-dimensional
conformation and functional dynamics of the MCIR pro-
tein. In cattle, coat colors are determined by the presence
of different pigments: eumelanin results in black color-
ation, while pheomelanin leads to red coloration, which
are essential in the melanogenesis pathway and ultimately
result in varying coat colors [9]. Variations in the MCIR are
known to affect coat color across buffaloes [5]. Such mod-
ifications are likely to affect the receptor’s ligand-binding
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affinity and the efficacy of downstream signal transduc-
tion pathways. Consequently, these structural changes
may contribute to variations in pigmentation phenotypes
and other associated traits in the bubaline species. This
detailed molecular analysis enhances our understanding
of the genetic basis underlying phenotypic diversity.
AlphaFold 3 utilized deep learning algorithms to predict
the protein structure of the MC1R, based on the amino acid
sequences of its subunits. Four amino acid changes were
able to create the different MC1R protein structure form
(Fig. 5), showing the 3D structural models of the bubaline
MC1R protein, comparing the wild-type (34,895 kDa) and
mutant (34,919 kDa) variants. Both structures were gen-
erated using homology modeling. Our in silico dimeriza-
tion of both wild-type and mutant forms indicates that the
presence of ARG 174 in the disallowed region suggests
that this residue may inherently face steric constraints
due to its local environment. However, the addition of GLN
157 in the disallowed region in the mutant form indicates
a mutation-induced structural strain, consistent with the

finding that mutations can affect protein stability and
function [19].

The MCIR gene has demonstrated that mutations can
disrupt protein stability and function through unfavorable
interactions, a phenomenon commonly observed in muta-
tion studies [20]. The overall lengths of the helices exhibit
slight variations between the wild-type and mutant pro-
teins. For instance, in Helix 3 (Pro17-Glu47), the length
measures 46.99 A in the wild type but decreases slightly
to 46.92 A in the mutant. Similarly, the unit rise, which
represents the vertical distance between residues along
the helical axis, also shows subtle differences. In Helix
4 (Ala55-Phe92), the unit rise increases from 1.49 A in
the wild type to 1.50 A in the mutant, reflecting a minor
adjustment in the helix structure. One of the most signifi-
cant differences lies in the deviation from ideal geometry.
For Helix 3, this deviation increases from 11.1 in the wild
type to 13.5 in the mutant, indicating a potential distortion
in the helix. Helix 4 also experiences a slight change, with
deviations shifting from 19.4 in the wild type to 19.1 in the
mutant.
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Figure 4. Four amino acid changes (arrow) in the two variants of the bubaline MCIR gene.
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Mutant (34,919)

Figure 5. Two different protein structures of bubaline MC1R.
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The distances between interacting helices show slight
shifts in several cases. For example, the distance between
helices A1 and A3 in Interaction 1 decreases from 8.9 A
in the wild type to 8.5 A in the mutant, indicating closer
packing. Similarly, in Interaction 3 (A3 and A4), the dis-
tance changes minimally, from 8.2 A in the wild type to
8.3 A in the mutant. Alongside these changes in distance,
the angles of interaction also exhibit subtle variations. In
Interaction 1 (A1 and A3), the angle shifts from -146.3° in
the wild type to —143.5° in the mutant, while in Interaction
10 (A4 and A9), it moves slightly from -153.1° to -153.5°.
The number of residues involved in these interactions also
varies slightly. For instance, in Interaction 3 (A3 and A4),
the mutant involves 30 residues (15 from each helix), com-
pared to 31 residues (16 from A3 and 15 from A4) in the
wild type. This reflects minor differences in residue partic-
ipation. In Interaction 16 (A9 and A10), the total number
of interacting residues remains the same (6), though their
distribution between the helices differs slightly. These
nuanced changes collectively highlight subtle structural
adjustments in the mutant protein.

The beta turns in the mutant protein differ noticeably
from those in the wild type. One key difference is the reduc-
tion in the number of beta turns, dropping from nine in the
wild type to just five in the mutant. This loss suggests that
certain beta-turn regions are missing, which could influ-
ence how the protein folds and its overall compactness.
Some beta turns are still present in the mutant, but they
show small differences. For example, Turn 1 (Ser49-Ala52)
in the mutant matches Gly49-Ala52 in the wild type, except
for the first residue, which changes from glycine to serine.
Meanwhile, Turn 5 (Ala244-Ser247) is retained in both
versions, but there are slight shifts in its conformational
angles. Interestingly, the types of these shared beta turns
remain consistent. Turn 1, for instance, is still classified as
type VIII, while the others are classified as type I, indicat-
ing that their structural roles have not changed drastically.
Subtle adjustments in the angles of certain residues also
highlight structural changes. In Turn 2 (Tyr127-His130),
the Phi angle for residue i+1 shifts slightly from -58.1°
in the wild type to -53.2° in the mutant, while the Psi
angle for residue i+2 moves from -68.4° to -66.1°. Turn 4
(Tyr243-Arg246) sees a more notable change, with the Phi
angle for residue i+1 moving from -85.8° to -78.6°.

Then the compactness of the beta turns, measured
by the distance between residues i and i+3, stays mostly
unchanged. Turn 1, for example, retains a consistent dis-
tance of 6.0 A in both forms, suggesting that its packing
remains similar. However, Turn 4 becomes slightly less
compact, with the distance increasing from 5.8 A in the
wild type to 5.9 A in the mutant. In addition, hydrogen
bonding changes are evident, with Turn 4 regaining a sta-
bilizing bond in the mutant that was absent in the wild
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type. These differences, although subtle, suggest that the
mutant protein has undergone changes in its beta turns
that could impact its overall stability and function. While
some regions remain structurally similar, the loss and
adjustment of specific beta turns reflect the impact of the
mutation.

The activation level of the MCIR receptor is primar-
ily influenced by three key factors: the concentration of
extracellular agonists, such as a-MSH (alpha-melanocyte
stimulating hormone), which stimulate receptor activity;
the concentration of extracellular antagonists or inverse
agonists, such as Agouti signaling protein (ASIP), which
inhibit receptor activity; and the receptor’s intrinsic basal
activity, which reflects its inherent level of activation in the
absence of external stimuli [21]. The MC1R gene encodes a
G-protein-coupled receptor primarily involved in regulat-
ing skin pigmentation by controlling melanin production
in melanocytes [11]. Structural alterations, such as muta-
tions leading to amino acid substitutions, can significantly
impact the receptor’s function. For instance, changes in
stability or folding could impact its ability to interact with
other molecules or perform its biological role effectively
[22]. Further studies are essential to elucidate the precise
functional consequences of these structural changes and
their broader biological implications.

The Ramachandran plots of the MC1R gene for the wild-
type and mutant forms (Fig. 6) were analyzed to assess the
impact of the mutation on the protein’s structural stabil-
ity. In the wild-type structure, 223 residues (95.3%) were
located in the most favored regions, while in the mutant
structure, this number slightly decreased to 222 residues
(94.9%). This reduction indicates a minor shift in struc-
tural stability introduced by the mutation. Additionally,
the number of residues in the additional allowed regions
remained constant at 10 residues (4.3%) for both forms,
suggesting that the overall structural flexibility was not
significantly altered. While the Ramachandran plot pro-
vides a static overview of structural quality, understanding
the dynamic effects of mutations in the MCIR gene, such
as changes in stability or signaling efficiency, requires
molecular dynamics simulations [23]. Future research
could incorporate molecular dynamics simulations to val-
idate these findings and assess the effects of the mutation
under biologically relevant conditions. Additionally, exper-
imental techniques such as X-ray crystallography or NMR
spectroscopy are essential for validating computational
findings and elucidating mutation-induced structural dif-
ferences [24,25].

The presence of residues in disallowed regions
increased in the mutant structure. In the wild type, only
one residue (0.4%) was found in disallowed regions, spe-
cifically Arg 174. However, in the mutant form, two resi-
dues (0.8%) occupied disallowed regions, namely ARG
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Figure 7. Secondary structure of MCIR. A. Wildtype. B. Mutant.

174 and GLN 157. The addition of GLN 157 in the disal-
lowed region highlights the potential destabilizing effect of
the mutation on the protein structure. These differences

suggest that the mutation may introduce localized strain
or steric clashes. The secondary structure of MC1R in wild-
type and mutant forms: it was observed that the structures
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generated by both computational methods are not signifi-
cantly different from the native structure (Fig. 7).

The novel mutation sites in the bubaline MCIR gene
will help us to understand coat color variation in buffalo.
By elucidating the molecular mechanisms governing pig-
ment production, these findings provide critical insights
into genetic diversity. Understanding these genetic varia-
tions not only enhances our knowledge of coat color inher-
itance but also sheds light on the broader implications
for the adaptive strategies and domestication processes
of this economically and culturally significant species.
Furthermore, this research highlights the importance
of comprehensive genetic studies that utilize advanced
sequencing techniques and diverse sample sources to
unravel the complexities of genetic diversity in livestock
and related species. While this study provides insights
into the genetic variation of MCIR and its potential asso-
ciation with coat color in Bali cattle, the comparative con-
text with other species remains limited. Previous research
has shown that MCIR mutations are strongly associated
with coat color phenotypes in species such as buffalo and
pigs. However, similar variants in yak or Bali cattle do not
always correlate with observable changes in pigmenta-
tion. This discrepancy may be attributed to species-spe-
cific differences in melanogenesis pathways, gene-gene
interactions (e.g., with ASIP MITF, or TYRP1), or regula-
tory mechanisms that compensate for the disruption of
MC1R. A more comprehensive cross-species comparative
analysis, including gene expression profiling and epistatic
interaction studies, is needed to elucidate these divergent
phenotypic outcomes. Another limitation lies in the exclu-
sive reliance on in silico predictions to assess the potential
impact of nonsynonymous SNPs on MC1R protein function.
Although computational tools such as PolyPhen-2 and
PROVEAN provide preliminary indications of deleterious
effects, these predictions do not substitute for experimen-
tal confirmation.

Conclusion

The identification of five mutation sites in the bubaline
MCI1R gene has significantly enhanced our understanding
of its structural and functional dynamics. Among these,
three mutations are novel, with their predicted amino acid
substitutions indicating potential effects on protein stabil-
ity and function. Moreover, the findings demonstrate that
these mutations alter the MC1R protein structure, particu-
larly affecting alpha helices and beta turns, which in turn
influence phenotypic traits.
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