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ABSTRACT

Objective: The study was formulated to analyze the health benefits and antifungal and 
anthelmintic properties of Alstonia scholaris, specifically its bark, as claimed in Mizo traditional 
medicine. Biochemical assays were set up to evaluate the antioxidant potential and bioactivity 
tests on activity against pathogenic fungi and helminth parasites.
Materials and Methods: Alstonia scholaris bark extract was prepared in petroleum ether, a 
non-polar solvent. Phytochemical detections were performed for 11 chemical tests. The total 
antioxidant, flavonoid, and phenol contents were determined. The free radical-scavenging reac-
tions were determined using 2,2-diphenyl-1-picrylhydrazine (DPPH) scavenging and ferric ion-re-
ducing antioxidant power (FRAP) assays. The antifungal activity was tested by an agar diffusion 
method. Anthelmintic activity was assessed by survival assay, scanning electron microscopy, and 
histology.
Results: Phytosterols were identified as the main bioactive compounds. The total antioxidant was 
estimated at 6.4305 mg ascorbate equivalent per gram, flavonoid at 128.03 mg gallic acid equiv-
alent per gram, and phenol at 10.72 mg pentahydroxyflavone equivalent per gram. The FRAP 
assay demonstrated a concentration-dependent scavenging of ferric (Fe⁺³) cations. The DPPH 
scavenging reaction showed the half-maximal inhibitory concentration at 136 µg/ml. It was found 
that the plant extract was effective against Candida albicans, Neocosmospora keratoplastica, 
and Neosartorya fumigata, with the highest degree of inhibition against C. albicans. It exhibited 
activity against the poultry tapeworm, Raillietina echinobothrida. Light and electron microscopy 
revealed signature antiparasitic effects on different parts of the parasite body
Conclusion: The study vindicated the medicinal properties of A. scholaris in terms of antioxidants, 
antifungal, and antiparasitic activities.
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Introduction

Despite the proclaimed successes in the development of 
antimicrobial and anthelmintic medications in the 20th 
century, which saved millions of lives from debilitating dis-
eases, the clinical management of microbial and helminth 
infections remains in a dire situation. The major factor is 
the evolution and rapid propagation of drug resistance, 

progressing to multidrug resistance (MDR) and exten-
sively drug resistance (XDR), which has created the super-
bugs that are virtually invincible to all the drugs available  
for their elimination [1,2]. The phenomena of MDR and 
XDR turned into a global health crisis, and the dangers 
posed by the pathogens are as critical as they were in the 
pre-antibiotic era. Millions of deaths, ranging from over 
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1to 5 million, were attributed to antibiotic resistance alone 
in recent years [3].

Pathogens, once thought to be well contained with 
proper therapeutic management, became more virulent 
and deadly than before. For instance, Mycobacterium 
tuberculosis and Helicobacter pylori infections are increas-
ing steadily and lead to escalation of mortalities due to 
tuberculosis and gastric cancer [4,5]. Antiparasitic resis-
tance in major helminth parasites is the primary cause of 
substantial economic losses in the animal industry, and the 
solution does not appear to lie within our current system 
of parasite management [6]. Lessons from the veterinary 
cases and reports of diminished efficacy of antiparasitic 
drugs used for human infections pose a greater concern, as 
helminthiasis is emerging as the most prevalent infectious 
disease in humans [7,8].

Natural products are a major source of pharmaceutical 
drugs, and many medications in clinical use are derived 
from plants or synthesized chemically from them [9,10]. 
Medications obtained from medicinal plants have been tri-
umphantly used in the treatment of the most serious to the 
mildest diseases. Camptothecin from Camptotheca acumi-
nata, paclitaxel from Taxus brevifolia, and vinca alkaloids 
(vinblastine and vincristine) from Catharanthus roseus 
(including their synthetic derivatives, vindesine, vinfl-
unine, and vinorelbine) are the frontline medications in 
cancer therapy [11,12]. Quinine from Cinchona pubescens 
and artemisinin from Artemisia annua, with their chemical 
derivatives, serve as the primary treatments of malaria and 
other parasitic infections [13]. Cocaine from Erythroxylum 
coca, digitoxin from Digitalis species, pilocarpine from 
Pilocarpus microphyllus, and codeine from Papaver 
somniferum are becoming household names in medicine 
for various medical conditions [14]. Thus, it is essential to 
conduct further explorations of well-established medicinal 
compounds to identify novel lead molecules for various 
infections.

An interesting plant is Alstonia scholaris (L.) R.Br., a 
deciduous evergreen tree naturally growing in Africa, 
Asia, and Australia [15]. In Asian cultures, such as those in 
China, India, and Malaysia, it is a well-established therapy 
for blood disorders, particularly in Plasmodium infections 
and severe fevers [16]. Based on applications in traditional 
Chinese medicine, several indole alkaloids isolated from 
the plant are undergoing clinical trials for the treatment of 
respiratory diseases [17]. One such compound, echitamine, 
has been actively experimented with as a lead compound 
for an antimalarial drug [18]. The plant is also one of the 
best-documented species in India, with recorded applica-
tions as an analgesic (specifically for rheumatoid arthritis), 
anticancer, antiparasitic, anti-asthmatic, anti-inflamma-
tory, antimicrobial (especially in leprosy and jaundice), 
and laxative agent [19–24]. It is given an unflattering com-
mon name, the Devil’s tree, due to its massive production 

of pollen that causes acute allergies during the flowering 
season [25]. It bears a characteristic arrangement of leaves 
that arise from a single node, and geographical varieties are 
recognized from the number of leaf whorls in each node, 
which can be from a few to many. In mainland India, the 
tree is known for its typical seven-leafed whorls [23,24].

Mizoram is the farthest northeastern state in India, 
situated within the Indo-Burma biodiversity hotspot, bor-
dered by Bangladesh to the west and Myanmar to the east. 
The scholaris in Mizoram identified so far are distinctively 
characterized by eight-leafed whorls, which is the basis 
for the Mizo vernacular name ṭhuamriat (literally, “eight 
whorled/branched”). According to Mizo folk medicine, the 
leaves and bark are effective remedies for asthma, diar-
rhea, dysentery, ear infections, heart diseases, hyperten-
sion, malaria, snake bites, antivenom, and typhoid fever 
[26–29]. The medicinal properties of its leaves had been 
reported [15,24], but there were no reports on the specific 
antifungal and anthelmintic properties. Especially bark, as 
a source of therapeutic agents, as in traditional tribal med-
icine, remains unexplored. It is therefore crucial to have a 
scientifically sound understanding of the acclaimed medic-
inal uses of the bark extract. The experimental study was 
thus organized to analyze the biochemical constituents, 
antioxidant status, and antipathogenic activities against 
pathogenic fungi and intestinal helminths of veterinary 
importance. The overall findings will provide a better 
understanding of the fundamental pharmacological prop-
erties of A. scholaris growing in Mizoram.

Materials and Methods

Ethical statement

All experimental procedures involving organisms were 
conducted under the approval of the Institutional Animal 
Ethics Committee of Pachhunga University College 
(PUC-IAEC-2022-02). The approval was issued on 15 
March 2022.

Plant source

The different parts of A. scholaris were obtained from the 
plantation at Lungdai, Mizoram, Northeast India, which is 
situated at 23°47'57.01"N 92°47'33.75"E. The flowers and 
leaves were made in herbaria and identified (vide BSI/ERC 
file number 102-17-05-23) at the Botanical Survey of India 
(Shillong Centre), Meghalaya, Northeast India. Preserved 
herbaria bearing the catalogue code PUC-AS-22-01 are 
maintained.

Extract preparation

The barks of A. scholaris were peeled off and cleansed in 
dechlorinated water. After pulverizing the material into 
small pieces with a grinder, it was dried in an ambient 
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environment for 1 month. The dried sample in batches of 
350 gm was loaded into a Soxhlet apparatus of 5-L capac-
ity. Hot extraction was performed using petroleum ether, 
an extremely nonpolar solvent with a polarity index of 
0.1. Complete extraction was accomplished in 4 days. 
The solvent was removed and recycled by vacuum-pres-
surized evaporation in Rotavapor® R-100 (Buchi, Flawil, 
Switzerland) to produce a concentrated extract.

Qualitative phytochemical detection

Secondary metabolites present in A. scholaris bark extract 
were detected using standard pharmacognostic chemical 
tests [30]. 11 chemical group tests were performed includ-
ing Dragendorff’s test, Mayer’s test, picric acid test and 
Wagner’s test for alkaloids; ammonia water hydroxide test 
and Borntrager’s test for anthracenediones; Barfoed’s test, 
Benedict’s test, iodine test, Fehling’s test and Molisch’s test 
for carbohydrates; lead acetate test, Shinoda reaction and 
Clemmensen reduction for flavonoids; Keller-Kiliani test, 
Legal’s test and Liebermann’s test for glycosomes; ethanol 
test for gums; Liebermann-Burchard’s test and Salkowski 
reaction for sterols; biuret reaction and ninhydrin test for 
amino acids and proteins; Benedict’s test and Molisch’s 
test for reducing sugars; froth test for saponins; iron(III) 
chloride reaction, lead acetate reaction and dichromic acid 
test for tannins.

Flavonoid content

Aluminium reduction reaction was performed to estimate 
the number of total flavonoids in A. scholaris extract [31]. 
Firstly, a stock solution of 100 mg/ml of the extract was 
prepared. 3,3’,4’,5,7-Pentahydroxyflavone was employed 
as a reference compound and made in concentrations of 
10, 20, 40, 60, 80, and 100 µg/ml. 2 ml of dechlorinated 
water was added to each sample. Plant extract solution 
was made from 1 ml of the stock sample and 2 ml of water. 
After mixing for 5 min, they were added with 300 µl each 
of aluminum trichloride (made at 10%) and sodium nitrite 
(at 5%). After 6 min, 2 ml of caustic soda was mixed with all 
the samples. Each sample was made to a total of 10 ml by 
adding dechlorinated water. They were allowed to remain 
for 60 min. The absorbance was taken at the wavelength 
of 510 nm in a double-beam LT39 UV-vis photometer 
(Labtronics, India). The linear regression of the reference 
compound was plotted, from which the amount of flavo-
noid was calculated as milligrams of pentahydroxyflavone 
equivalent per gram (mg PFE/gm) of the dried extract.

Antioxidant content

The total antioxidant constituent was quantified using 
the phosphomolybdic acid assay [32]. A reference anti-
oxidant, ascorbate (L-ascorbic acid), was made into six 

concentrations as in the total antioxidant assay. A reagent 
mixture was prepared with 4 mM ammonium paramolyb-
date, 28 mM sodium orthophosphate, and 0.6 M hydrogen 
sulfate. 3 ml of the reagent was mixed with 100 µl of each of 
the ascorbate samples and the plant extract. The mixtures 
were maintained at 95°C in a chemical incubator for a sta-
ble reaction. After 1.5 h, the solutions were taken out in 
an ambient environment and left to cool. The absorbance 
was read at 695 nm. From the standard graph plotted for 
ascorbate, the antioxidant content was calculated as milli-
grams of ascorbate equivalent per gram (mg ABE/gm) of 
the dried extract. Each test was executed in triplicate.

Phenolic content

The phenolic content was quantified from the phosphomo-
lybdic acid and phosphotungstate reaction [33]. Gallic acid, 
used as a standard reference, was prepared in increasing 
concentrations as in previous assays. Five milliliters of 
Folin-Ciocalteu reagent was mixed with each sample and 
left for 3 min to allow for complete chemical reaction in 
an ambient environment. The reagent was also mixed with 
200 µl of the plant extract solution. 4 ml of 0.7 M disodium 
carbonate was added to all samples and whisked using a 
magnetic stirrer for 60 min. The absorbance was recorded 
at 765 nm and adjusted against a blank solution prepared 
from Folin-Ciocalteu reagent, methanol, and disodium car-
bonate in a 5:1:4 ratio. The total phenol concentration was 
determined using the calibration graph of gallic acid and 
calculated as milligrams of gallic acid equivalent per gram 
(mg GAE/gm) of the dried extract.

Ferric ion-reducing antioxidant power (FRAP) assay

The antioxidation capacity against ferric ion was evaluated 
by the potassium ferricyanide reaction [34]. Ascorbate was 
taken as a reference antioxidant. Ascorbate and A. scholaris 
extract were prepared in increasing concentrations as in 
previous assays. 10% Potassium hexacyanoferrate (III) 
and phosphate buffer (pH 6.6) were added to 1 ml of all 
the samples. After centrifugation at 3,000 rpm for 10 min, 
from each sample, the supernatants (2.5 ml each) were 
taken and mixed with 2.5 ml of dechlorinated water. 0.1% 
Iron (III) chloride was added to all samples to make a 3 ml 
volume. For a reference blank reading, a mixture of 2.5 ml 
of potassium ferricyanide, 1 ml of dechlorinated water, and 
2.5 ml of phosphate buffer was used. The absorbance was 
read at 700 nm against the blank solution.

2,2-diphenyl-1-picrylhydrazine (DPPH)-scavenging activity 
assay

The capacity to scavenge cellular oxidants was assessed 
by the DPPH degradation method [35]. Both A. scholaris 
extract and dibutylhydroxytoluene, a standard antioxidant, 
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were made in different concentrations as in the previous. 
To 3 ml of all the samples, 500 µl of 1 mM DPPH was added. 
Negative control consisted of DPPH and methyl alcohol in 
a 1:3 ratio. All the samples underwent reaction at 37°C 
for 30 min. The intensity or optical density (OD) was read 
at 517 nm. The degree of oxidant-scavenging action was 
estimated as:

Scavenging action(%) =
Control OD − Extract OD

× 100
Control OD

half-maximal inhibiting concentration (IC50) was calcu-
lated from a dose-response curve prepared from log10 at 
1, 0.5, and 0.25 mg/ml.

Fungal inhibitory assay

The fungal inhibitory property of A. scholaris extract was 
evaluated using agar diffusion based on the poisoned food 
technique [36], one of the most sensitive tests for antifungal 
activity [37]. Candida albicans (ATCC 26790), Neosartorya 
fumigata (ATCC 204305), and Neocosmospora keratoplas-
tica (ATCC 36031) were obtained from the HiMedia com-
pany, Mumbai, Maharashtra, India. Each fungal specimen 
was applied to a sterilized growth medium consisting of 
potato-dextrose agar kept in Petri dishes. The cultures 
were maintained at 27°C ± 2°C and allowed to proliferate 
for 7 days in a sterile chamber (Igene IG-95I, New Delhi, 
India). The plant extract was prepared in 1.25, 2.5, 5, and 
10 mg/ml using 20 ml of fresh and liquefied potato-dex-
trose agar. A negative control was set aside, having only the 
agar medium. 6 mm discs were cut from the fully grown 
fungi using a disinfected cork borer and were inoculated at 
the center of the Petri dishes in which culture media were 
maintained. All the culture dishes were sealed airtight 
with sterile parafilm. While incubating at 27°C ± 2°C for 7 
days, the growth zones were recorded every day. The total 
inhibition of growth was estimated in percentage against 
the growth zones of the control.

Antiparasitic susceptibility assay

Raillietina echinobothrida Megnin, 1,880 were obtained by 
dissection of the intestines of chickens, Gallus domesticus 
Linnaeus, 1,758. Following the standardized helminth sur-
vival assay [38], the tapeworms were maintained in a micro-
biological incubator kept at 37°C± 1°C in culture media made 
of 0.9% phosphate-buffered saline (PBS) and 1% sulfinyl-
bismethane (SBM). They were exposed to A. scholaris bark 
extract at 5, 10, and 20 mg/ml made with the culture media. 
Negative control consisted of tapeworms maintained in only 
PBS + SBM, and positive control was treated with a reference 
antiparasitic drug, albendazole. For each test, three tape-
worms were used, and each test was conducted in triplicate. 
Survival value was given in mean ± standard deviation.

Histology and light microscopy

Alstonia scholaris extract-treated R. echinobothrida were 
processed for histology to determine possible alterations 
in the structure of the anatomical parts. The worms were 
cleansed in PBS solution and then immersed in Bouin fluid 
overnight for complete tissue fixation. The fixative was 
washed off in distilled water, and the tissues were dehy-
drated from 30% to 100% ethyl alcohol. They were deal-
coholized using xylene and then made into cubes using 
paraffin. Sections were cut at ~5 µm thickness in an MRM 
-ST microtome (Medimeas, Haryana, India). The tissue 
sections were spread on glass slides and dehydrated in 
increasing concentrations of ethanol. After double staining 
with hydroxybrazilin and bromo acid, they were fixed on 
slides and visualized under an Eclipse CiE DSRi2 micro-
scopic analyzer (Nikon, Tokyo, Japan).

Scanning electron microscopy

The anthelmintic effect on the tapeworm was assessed 
using scanning electron microscopy, as the technique 
allows identification of the finest details of structural 
damages [38] . Alstonia scholaris extract-treated 
R. echinobothrida was washed thoroughly in PBS. They 
were cut into small sections and kept in methanol (10% 
buffered with PBS at pH 7) at 4°C for tissue fixation. After 
4 h, complete dehydration was performed through ascend-
ing grades of acetone. To stabilize the tissues, the tape-
worms were immersed in tetramethylsilicane for 10 min. 
The solvent was removed by evaporation in an air-dryer 
containment at 25°C. The tissue was smeared with gold 
using a Hitachi MC1000 coater, and the micrographs were 
generated from a Hitachi TM4000Plus II electron micro-
scope (Tokyo, Japan).

Statistical analysis

Comparison of the different experimental groups was car-
ried out with analysis of variance and Tukey’s group differ-
ence test. Significance level between groups was taken at 
p < 0.05. Data analysis and generation of graphs were done 
in Prism 10.4.1 (GraphPad, Boston, USA).

Results

Phytocompounds 

Based on standard chemical detection procedures, 11 
phytocompounds were tested on the petroleum ether 
extract of A. scholaris bark. Alkaloids, anthracenediones, 
carbohydrates, flavonoids, glycosomes, gums, proteins 
and amino acids, reducing sugars, saponins, and tannins 
were not detected by the specific tests employed for each. 
Phytosterols appeared to be the main phytocompounds, 
as indicated by both the Liebermann-Burchard test and 
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the Salkowski reaction (Table 1). This could be expected, 
as the Petroleum Ether is a highly nonpolar solvent and 
would most likely eliminate most of the polar molecules, 
such as alkaloids, anthracenediones, carbohydrates, and 
proteins, during hot extraction.

Flavonoid

The total flavonoid component of A. scholaris extract was 
calculated from the linear graph of pentahydroxyflavone 
as shown in Figure 1A. The calculation indicated that the 
plant contains a total flavonoid of 128.03 ± 5.96 mg PFE/
gm of the dried extract.

Total antioxidant

The linear graph of standard ascorbate for determining the 
total antioxidant content is illustrated in Figure 1B. From 

regression analysis, the total antioxidant level of the plant 
sample was estimated at 6.43 ± 0.05 mg ABE/gm of the 
dried extract.

Phenol

The calibration curve of gallic acid as shown in Figure 1C 
was taken for the estimation of the total phenol present in 
the plant extract. Quantification from the linear graph gave 
the total phenol as 10.72 ± 0.13 mg GAE/gm of the dried 
extract.

Table 1. Qualitative detection of compound from the chloroform 
extract of A. scholaris bark.

Phytocompounds Name of test Extract indication

Alkaloid 1. Dragendorff’s test -

2. Mayer’s test -

3. Picric acid test -

4. Wagner’s test -

Anthracenedione 1. Ammonia water test -

2. Borntrager’s test -

Carbohydrate 1. Barfoed’s test -

2. Benedict’s test -

3. Fehling’s test -

4. Molisch’s test -

Flavonoid 1. Lead acetate test -

2. Shinoda reaction -

3. Clemmensen reduction -

Glycosomes 1. Keller-Kiliani test -

2. Legal’s test -

3. Liebermann’s test -

Gum 1. Ethanol test -

Phytosterol 1. Liebermann-Burchard test +

2. Salkowski reaction +

Protein and amino 
acid

1. Biuret reaction -

2. Ninhydrin test -

Reducing agent 
(sugar)

1. Benedict’s test -

2. Molisch’s test -

Saponin 1. Froth test -

Tannin 1. Iron (III) chloride reaction -

2. Lead acetate reaction -

3. Dichromic acid test -

+ = presence; - = absence.

Figure 1. Standard graphs for quantifying antioxidant contents 
in A. scholaris bark extract. (A) Pentahydroxyflavone (quercetin) 
for the total flavonoid. (B) Ascorbate for the total antioxidants. 
(C) Gallic acid for the total phenol. Bars represent standard error 
of the Mean (n = 3).
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Antioxidant activity

The FRAP assay indicated that A. scholaris bark extract and 
the reference compound, ascorbate, exhibited dose-depen-
dent efficacy. The plant extract showed lower activity than 
ascorbate at all concentrations tested (Fig. 2). Ascorbate 
activity drastically increased at higher concentrations, 
while that of the plant extract showed a linear increase. 
The data shows that the plant extract has the chemical 
property to convert metabolically harmful ferric cations 
(Fe⁺³) to less innocuous ferrous cations (Fe⁺²).

The antioxidant property evaluated from the chem-
ical scavenging of DPPH free radical showed a distinct 
concentration-dependent reaction (Fig. 3). The standard 

antioxidant, dibutylhydroxytoluene, also showed similar 
activity with higher efficacy. From the log dose calculation, 
the plant extract had an IC50 of 136 µg/ml, which was far 
less than that of dibutylhydroxytoluene at 5.60 µg/ml.

Fungal inhibition

The fungal inhibition of A. scholaris extract upon C. albi-
cans, N. fumigata, and N. keratoplastica is presented in 
Table 2. Under normal conditions, the three species prolif-
erated uniformly during 1-week culture characterized by 
enlarged circles of growth areas around each sample. In 
control experiments, maximal growth was observed among 
all experimental cultures for all fungi. Slowest growth was 
noted for C. albicans, followed by N. keratoplastica, while 
N. fumigata proliferated the fastest. The plant extract 
effectively inhibited progressive proliferation against the 
three fungi. However, insignificant inhibitions were seen 
in the minimum concentration (25 mg/ml) in all the fungi, 
compared to the control. Inhibition was slowest in N. ker-
atoplastica, while the statistically highest inhibitions were 
seen in C. albicans. The total inhibition against different 
fungi at the highest concentrations was 4.3% against N. 
fumigata, 10.9% against C. albicans, and 9.2% against N. 
keratoplastica. Statistical comparisons of the degree of 
proliferation among the three fungi under various condi-
tions are depicted in Figure 4.

Antiparasitic activity 

Alstonia scholaris bark extract showed effective concentra-
tion-dependent antiparasitic action against the tapeworm, 
as indicated by the data provided in Table 2. Significant effi-
cacy was observed for all concentrations tested. Statistical 
group comparison of the negative control and treatment 
conditions is depicted in Figure 5. The reference antipara-
sitic drug, albendazole, showed swifter killing activity, but 
statistical comparison indicated that the plant extract was 
equally effective (p < 0.0001).

Light micrographs of the section of tapeworm exposed 
to A. scholaris extract revealed several structural changes 
(Fig. 6). The most profound effects were seen on the paren-
chyma tissues that surround the longitudinal muscle and 
sub-tegumental layers. The otherwise thick parenchyma is 
reduced to a faint tissue layer, indicating extensive disin-
tegration of the proteinaceous layer. Hazy red spots indi-
cating longitudinal muscle remained. One of the lateral 
canals is enormously distended with the breakage of the 
surrounding egg capsule. The circular muscle surrounding 
the egg capsule was almost entirely disintegrated, repre-
sented by thin red filaments.

From scanning electron micrographs, it was evident 
that the tegumental disruption was extensive through-
out the body. The anterior end part called the scolex and 
the adjoining neck segments showed surface distortion 

Figure 2. Ferric ion reducing activity of A. scholaris bark extract 
and ascorbate.

Figure 3. DPPH scavenging activity of A. scholaris bark extract 
and dibutylhydroxytoluene.
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and tegumental shrinkage (Fig. 7A). Critical damage was 
seen on the eye-like suckers that indicate removal of 
large chunks of spines (the crucial attachment devices 
to the host) (Fig. 7A). The tegument on the scolex is 
extremely corrugated with lumps of abnormal tis-
sue debris attached randomly to the surface (Fig. 7B). 
Surface peeling was extensive within the rostellum, 

which lost most of its attachment organs called the 
hooks. The sucker showed half of the spine still attached, 
but the other half was removed (Fig. 7C). The immature 
body segments, or proglottids, are hardly distinguish-
able from one another due to severe shrinkage and con-
striction along the longitudinal axis of the body (Fig. 8A). 
A closer view of the proglottids revealed the sharpness 
of the tegumental folds, reflecting the severity of the 
shrinkage. There were clear dark spots indicating pit 
formation all over the tegument. There were no signs 
of smooth filaments or microtriches, but instead there 

Figure 5. Comparison of the anthelmintic efficacy between A. 
scholaris bark extract and albendazole against R. echinobothrida. 
Values are in means ± standard error of means (n = 9); ****p < 
0.0001, *** p < 0.002.

Figure 6. Light micrograph of a histological section of 
R. echinobothrida treated with A. scholaris bark extract. The 
tegument (TM) is the outermost body surface, followed by the 
sub-tegument (ST) and the longitudinal muscle (LM). Fiber-
like red spots are parenchymatous tissue (PT). Circular muscle 
(CM) surrounds the egg capsules (EC). Lateral canals (LC) are 
excretory organs.

Figure 4. Comparison of the antifungal action of 
A. scholaris bark extract against three fungal species. Values 
are in means ± standard error of means (n = 3); ****p < 0.0001, 
***p < 0.002, **p < 0.001, *p < 0.05, and ns = not significant.
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was numerous tissue debris adhering to the tegument 
(Fig. 8B). The mature proglottids showed large portions 
of their tegument eroded, scarred, and abnormal folds at 

some points (Fig. 8C). A magnification of the eroded por-
tion of a mature proglottid revealed the formation of lob-
ular blebs, clumping of the microtriches, and formation 
of pits throughout the tegument (Fig. 8D).

Discussion 

Plant secondary metabolites have been a major focus for 
lead molecules for drug developments, because of which 
several pharmaceutical medications have been derived, 
including those used as antibiotics, anti-cancer, immune 
suppressant, anti-diabetic, and antiprotozoal drugs [39,40]. 
Chemical analyses of the Petroleum Ether extract of A. 
scholaris bark in this study established that the species is 
an abundant source of phytosterols. Different phytosterols, 
over 250 chemically distinct types identified in different 
plants, are experimentally demonstrated to have thera-
peutic potential for debilitating diseases, including cardio-
vascular diseases, diabetes mellitus, immune disorders, 
and obesity [41,42]. Health authorities like the European 
Food Safety Authority  and the Nutrition Foundation of 
Italy had seriously pondered and commended the use of 
phytosterols as the principle hypolipidemic supplement, 
as they are specifically effective in reducing low-density 
lipoprotein of the blood [43]. Evidence in the present data 
that A. scholaris is a valuable source of phytosterols, thus, 
may attest to many of the plant’s medicinal properties as 
claimed in traditional medicines.

Another facet of A. scholaris found in the present study 
was its multitudinous antioxidant properties, containing 
substantial amounts of antioxidant components and having 
the ability to chemically scavenge cellular oxidants. Free 
radicals (reactive oxygen species) are the regular by-prod-
ucts, during normal cell metabolisms. However, due to con-
stant cellular activity, they tend to accumulate in the cells 
beyond the point at which endogenous antioxidants can 
scavenge them and ultimately turn into highly cytotoxic 
molecules that are deleterious to the functional and struc-
tural biomolecules like DNA, RNA, lipids, and proteins [44]. 
The oxidative stress produced by such a conglomerate of 
injurious chemicals becomes the etiological factor of the 
most dangerous ailments, including cancer, hematological 
disorders, and pulmonary-cardiac diseases [45]. The extra 
radical scavengers are obtained from our diet, plants being 
the primary food sources, thus serving as the major source 
of exogenous antioxidants [46,47]. We demonstrated that 
A. scholaris does contain a substantial quantity of flavo-
noids, phenols, and total antioxidants, suggesting that the 
plant is an invaluable source of nutrients for health bene-
fits. The actual antioxidant activity determined from DPPH 
and FRAP assays, which are the standard tests for free rad-
ical chemical activity [48,49], also justifiably corroborated 
the overall antioxidant property of the plant.

Species of Alstonia are documented to have antifun-
gal activities. The leaf extract of A. rupestris showed mild 

Figure 7. Scanning electron micrographs of the anterior body 
of R. echinobothrida treated with A. scholaris bark extract. (A) 
The scolex and the neck. (B) The scolex is magnified to show 
the rostellum on the left and one sucker on the top. (C) A sucker 
showing rows of spines at the top portion.
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inhibition of plant fungal pathogens such as Alternaria 
alternata and Phytophthora capsici [50]. Extracts of 
Alstonia macrophylla leaves showed weak antifungal activ-
ity against human dermal pathogens like Trichophyton 
rubrum, Trichophyton mentagrophytes, and Microsporum 
gypseum [51]. Venenatine, an indole alkaloid isolated from 
A. venenata, caused 10% inhibition against Alternaria 
brassicicola, Fusarium udum, Ustilago cynodontis,  and 
Aspergillus flavus [52]. We demonstrated in this study that 
A. scholaris bark extract was effective against C. albicans, 
N. fumigata, and N. keratoplastica, which are some of the 
most impactful pathogenic species in animals and humans. 
The plant is more efficacious than other Alstonia species, 
particularly against C. albicans, in which 10.9% inhibi-
tion was observed. The infection of C. albicans, known as 
candidiasis, manifests most commonly in the skin, diges-
tive tract, and vagina, sometimes leading to life-threaten-
ing conditions. It becomes a more serious clinical issue 
because of the emergence of antimicrobial resistance in 
the fungi [53,54]. Neosartorya fumigata is one of the most 
common airborne infections and deadliest pathogens in 
immunocompromised individuals [55]. Neocosmospora 
keratoplastica is remarkable in that it causes severe eye 

infection (keratitis) and is becoming an emerging pathogen 
with drug resistance [56]. The observation that A. scholaris 
exhibited antifungal activities against these pathogenic 
fungal species unveils the potential pharmacological value 
of the plant.

Furthermore, we found that the plant was highly effec-
tive against a parasitic tapeworm. Antiparasitic resistance 
is considered one of the most critical impediments in the 
animal industry, resulting in massive economic losses 
[7,56]. The reports of diminished effectiveness of the 
available drugs and possible development of total drug 
resistance are medical concerns of grave danger [6,57]. 
Common anthelmintic drugs like albendazole and prazi-
quantel have been documented to show varying degrees 
of structural damage to tapeworms, including tegumental 
distortion, erosion, and removal of microstretches, and 
loss of spines on the suckers [38,58]. In helminth para-
sites, drugs enter the body through the general body sur-
face and thus directly attack the body-host interface to 
induce cellular and structural damage [59,60]. Removal of 
spines, tegumental erosion, removal of microtriches, and 
general shrinkage observed in this investigation indicated 
the strong anthelmintic effects of A. scholaris. Thus, while 

Figure 8. Scanning electron micrographs of the body segments of R. echinobothrida treated with A. scholaris 
bark extract. (A) The immature proglottids. (B) Magnification of immature proglottids revealing sharp folds and 
numerous black pits. (C) The mature proglottids with localized erosions. (G) A magnified mature proglottid.
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a need for new or improved drugs is pressing, it will be an 
interesting avenue if A. scholaris contains such lead mole-
cules, as suggested by the present findings.

Conclusion

Alstonia scholaris bark extract was demonstrated to pos-
sess health benefits as indicated by its antioxidant con-
tents and capacity to scavenge cellular oxidants. It was 
found to be rich in phytosterols. It showed activity against 
three important pathogenic fungi: C. albicans, N. fumigata, 
and N. keratoplastica. It was most effective against the 
most pathogenic species, C. albicans. It also exhibited anti-
parasitic activity against the tapeworm, R. echinobothrida. 
Light and scanning microscopy attested to the character-
istic antiparasitic action with varying detrimental effects 
on the parasite. The study validates the plant as a strong 
antipathogenic agent and warrants deeper exploration into 
the pharmacological principle and medicinal application.
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Table  2. Effects of A. scholaris bark extract on the growth pattern of fungi.

Duration Growth zone in mm (means ± SD)

0 (control) 25 mg/ml 50 mg/ml 100 mg/ml 200 mg/ml

Candida albicans

Day 1 04.52 ± 0.35 04.18 ± 0.21 03.76 ± 0.32 03.49 ± 0.20 03.06 ± 0.34

Day 2 07.68 ± 0.31 06.91 ± 0.40 06.11 ± 0.41 05.01 ± 0.22 04.58 ± 0.44

Day 3 09.18 ± 0.91 08.87 ± 0.27 08.50 ± 0.96 08.01 ± 0.52 07.93 ± 1.03

Day 4 11.61 ± 0.41 11.16 ± 0.34 10.51 ± 0.39 09.65 ± 0.42 09.38 ± 0.37

Day 5 17.45 ± 0.43 16.73 ± 0.38 16.32 ± 0.27 15.53 ± 0.44 16.63 ± 0.49

Day 6 23.53 ± 0.45 22.70 ± 0.42 22.12 ± 0.19 20.53 ± 0.94 20.30 ± 0.36

Day 7 26.44 ± 0.34 25.68 ± 0.47 24.77 ± 0.40 23.98 ± 0.47 23.52 ± 0.37

Neosartorya fumigata

Day 1 05.67 ± 0.52 05.55 ± 0.10 05.53 ± 0.10 05.53 ± 0.21 04.49 ± 0.34

Day 2 20.14 ± 0.78 19.69 ± 0.37 18.88 ± 0.36 18.06 ± 0.52 17.56 ± 0.48

Day 3 40.05 ± 0.12 38.31 ± 1.02 38.16 ± 0.63 36.70 ± 1.12 35.53 ± 0.23

Day 4 47.56 ± 0.55 47.39 ± 0.29 45.74 ± 0.39 44.99 ± 0.44 44.58 ± 0.37

Day 5 60.03 ± 0.45 59.62 ± 0.23 58.53 ± 0.47 57.79 ± 0.41 57.37 ± 0.46

Day 6 74.08 ± 0.66 73.17 ± 0.46 72.46 ± 0.46 71.77 ± 0.36 71.47 ± 0.38

Day 7 78.79 ± 0.36 78.11 ± 0.65 77.86 ± 0.81 76.09 ± 0.44 75.40 ± 0.39

Neocosmospora keratoplastica

Day 1 04.39 ± 0.63 04.25 ± 0.34 04.03 ± 0.43 03.89 ± 0.09 03.64 ± 0.14

Day 2 11.12 ± 0.27 10.64 ± 0.38 10.13 ± 0.56 09.43 ± 0.59 08.75 ± 0.44

Day 3 21.00 ± 0.39 20.40 ± 0.40 19.68 ± 0.50 19.17 ± 0.43 17.74 ± 0.65

Day 4 29.29 ± 0.48 28.00 ± 0.68 21.13 ± 0.26 26.08 ± 0.28 25.02 ± 0.24

Day 5 51.01 ± 0.26 50.01 ± 0.28 49.26 ± 0.29 48.14 ± 0.29 47.00 ± 0.73

Day 6 66.61 ± 0.51 64.65 ± 0.51 63.63 ± 0.47 62.14 ± 0.62 61.44 ± 0.46

Day 7 73.87 ± 0.36 68.47 ± 0.37 67.79 ± 0.37 67.31 ± 1.52 67.08 ± 0.57
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