

ORIGINAL ARTICLE

Association study of the *CSN2* gene with milk yield in the Sapera goat

Santiananda Arta Asmarasari¹ , Galih Ari Wirawan Siregar² , Ferdy Saputra¹ , Lisa Praharani¹ ,
Zultinur Muttaqin¹ , Diana Andrianita Kusumaningrum¹ , Nurul Azizah¹ , Wisri Puastuti¹ ,
Dwi Yulistiani¹ , Supardi Rusdiana¹ , Anneke Anggraeni¹ , Suyatno Suyatno¹ ,
Teguh Ari Prabowo¹ , Nurul Pratiwi¹ , Cecep Hidayat¹

¹Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, Indonesia

²Department of Animal Science, Faculty of Agriculture, Universitas Sumatera Utara, Medan, Indonesia

ABSTRACT

Objective: This research was conducted to assess the influence of *CSN2* exon 7 milk production and the additive and dominance effects.

Materials and Methods: DNA was isolated from 64 goats that possessed the *CSN2* gene and subjected to a polymerase chain reaction and genotyping by Sanger sequencing. Genotype effect can be assessed through analysis of variance and the generalized linear model, which can estimate additive and dominance effects.

Results: Dairy traits are greatly influenced by the crucial role played by the *CSN2* gene. The influence of SNP g.8946C > T on milk yield (MY) is statistically significant ($p < 0.05$). Nevertheless, the impact of SNP g.8956G > A on MY is not statistically significant. Furthermore, the MY of Sapera goats is affected by both Parity ($p < 0.01$) and days in milk ($p < 0.01$).

Conclusion: The CC genotype demonstrates a higher MY without noticeable additive or dominance effects. Evaluating the SNP g.8946C > T necessitates many samples and phenotypes.

ARTICLE HISTORY

Received January 21, 2025

Revised August 21, 2025

Accepted August 24, 2025

Published December 25, 2025

KEYWORDS

Sapera goat; *CSN2* gene; association study; additive effect; dominance effects

© The authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (<http://creativecommons.org/licenses/by/4.0>)

Introduction

Goat milk has gained popularity as a medicinal food due to its composition and nutritional value, including protein, minerals, vitamins, amino acids, and fatty acids, which can help boost the body's resistance to respiratory diseases like COVID-19 compared to cow's milk [1]. Furthermore, goat milk is considered safe for consumption by lactose intolerants due to its lower lactose content and unique digestibility [2].

In Indonesia, goat's milk has a niche market and is less popular than cow's milk. However, the demand for goat's milk in Indonesia, particularly during and after the COVID-19 pandemic, has been increasing; however, its supply remains significantly lower [3]. This makes goat milk prices significantly higher than those of cow's milk, even five to seven times higher [4].

Generally, goat milk originates from Etawah-grade (PE) goats, a local breed, crossbreeding between Etawah goats and Indonesian indigenous goats (Kacang goats). The milk production of this local breed is low, with a daily yield of 0.8–1.5 l [5]. Indonesia has introduced an exotic dairy goat breed, such as the Saanen. Based on microsatellite information, Saanen and PE goats exhibit a significant genetic difference [6,7]. Therefore, crossbreeding between Saanen and PE could potentially improve the milk production of local goats [8], resulting in a new dairy goat breed called Sapera, with an average milk production of 1.47 l/d [3].

Milk contains two primary proteins: Casein and Whey. Casein is a type of protein found in milk, containing up to 80% of the protein in goat milk, and plays several roles in nutrition and body health. Casein contains nine essential

Contact Lisa Praharani lisa.praharani@gmail.com Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, Indonesia.

How to cite this article: Asmarasari SA, Siregar GAW, Saputra F, Praharani L, Muttaqin Z, Kusumaningrum DA, et al. Association study of the *CSN2* gene with milk yield in the Sapera goat. *J Adv Vet Anim Res* 2025; 12(4):1211–1216.

amino acids, including histidine, valine, threonine, tryptophan, lysine, leucine, isoleucine, methionine, and phenylalanine, and provides calcium for maintaining bone health. Compared to bovine milk, goat milk has higher quality and variations in composition, including lower α s1-casein and higher β -casein levels, smaller fat globules, medium-chain fatty acids, and higher mineral levels [9-11].

The encoding of casein involves four genes: *alpha-S1* (*CSN1S1*), *alpha-S2* (*CSN1S2*), *beta* (*CSN2*), and *kappa* (*CSN3*) [12]. Beta-casein, encoded by the *CSN2* gene, makes up approximately half of the total protein found in Sarda goat milk. This protein plays a vital role in the manufacturing properties of milk, particularly in the formation and stabilization of micelles in Dutch dairy goats [13]. The Goat *CSN2* promoter region has been associated with the absence of beta-casein in milk [14].

The *CSN2* locus has been known to influence the percentage of milk protein, milk fat, milk production, and the content of free fatty acids [15]. Previous research conducted by Deviandini et al. [16] has found SNPs in *CSN2* that influence lactose and salt content in Sapera goats. However, the effect of *CSN2* on milk yield (MY) in Sapera goats has never been studied, which is necessary to support the molecular information of an Indonesian new dairy goat breed and to complete the understanding of milk quality related to the *CSN2* gene. Therefore, this study was conducted to investigate the influence of *CSN2* exon 7 on MY and its additive and dominance effects in Sapera goats. This study will provide a genetic basis for marker-assisted selection of Sapera goats, enhancing productivity, sustainability, and economic returns in tropical dairy goat farming.

Materials and Methods

Ethical approval

This research was approved for ethical clearance by the Animal Welfare Animal Ethics Committee of the Agricultural Research and Development Center, registered under Balitbangtan/Balitnak/Rm/11/21.

Animals

A total of 64 Sapera goats had blood taken from the jugular vein. The blood was stored in 10 ml EDTA Vacutainer tubes. The extraction of DNA from whole blood samples was performed using the Geneaid DNA extraction kit (Geneaid Biotech., Taiwan). The phenotypes collected for analysis were parity, days in milk (DIM), and MY. MY was recorded as daily yield (kg/day), averaged from two consecutive collections in the morning (5:00–6:00 a.m.) and afternoon (3:00–4:00 p.m.).

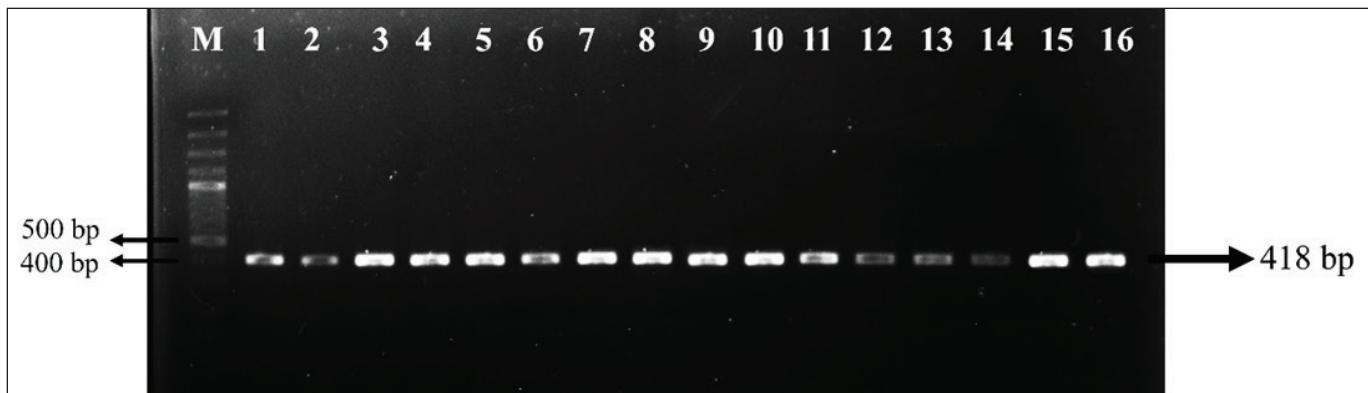
DNA extraction and polymerase chain reaction (PCR)

The primer for exon 7 of the *CSN2* gene was designed based on sequences available in GenBank under the accession number [AJ011018](#). The amplified product length from a forward primer (5'- GGC ACA GTC TCT AGT CTA TC -3') and reverse primer (5'- CCT TTC TGC TGT ACC AGG AG -3') was confirmed to be 418 bp. DNA was extracted using a commercially based kit to maintain high-quality genomic DNA that can be amplified. DNA concentration was determined using a spectrophotometer for both confirmation of concentration and purity before amplification by PCR.

DNA amplification was performed using the PCR method in an Applied Biosystem 9700 (Thermo Fisher Scientific, US). All PCR runs were carried out in a final volume of 25 μ l, to which 2 μ l of DNA, 6.1 μ l of nuclease-free water, 0.3 μ l of reverse primer, 0.3 μ l of forward primer, and 16 μ l of μ l MyTaq HS Redmix (Bioline, UK) were added. Thermal cycling conditions for PCR were pre-denatured at 95°C for 5 min, with 35 cycles of denaturation for 15 sec, annealing at 60°C for 15 sec, and extension at 72°C for 10 sec, followed by final extension at 72°C for 1 min. These conditions were then optimized from preliminary experiments to achieve maximum yield and specificity of the target amplicon, as reported in the literature.

Post-amplification, the quality of the PCR products was assessed using agarose gel electrophoresis, followed by visualization under ultraviolet light to confirm the presence of the expected 418 bp band (Fig. 1). The amplicon was sequenced using the services provided by 1st Base, located in Selangor, Malaysia, to ensure accurate identification of nucleotide variations.

Statistical analysis


Power analysis was conducted to determine the required sample size to detect a statistically significant effect. The analysis was performed using the power package in R 4.3.1 [17]. Data analysis was conducted using R 4.3.1 [17], where the analysis of variance function was employed to compare the mean values, followed by the least significant difference post hoc range test. The statistical model for the association of *CSN2* genotype was

$$Y_{ijk} = \mu + p_i + d_k + g_j + \epsilon_{ijk}$$

where Y_{ijk} was MY, μ was the population mean, p_i was the parity effect, d_k was the DIM effect, g_j was the genotype effect, and ϵ_{ijk} was an error.

The generalized linear model was used to analyze the additive and dominance effects:

$$y = \mu + C_{pp} + C_{ii} + C_{aa} + C_{dd} + e$$

Figure 1. The visualization of the *CSN2* gene exon 7 in the Sapera goat.

Table 1. Effect g.8946C > T and g.8956G > A on milk traits in Sapera goat.

Genotype (n)	g.8946C > T		g.8956G > A		
	CC (13)	CT (28)	TT (23)	GG (41)	GA (23)
MY (kg/day)	1.028 ± 0.456 ^a	0.753 ± 0.339 ^b	0.81 ± 0.3 ^{ab}	0.833 ± 0.388 ^a	0.831 ± 0.333 ^a

Different superscripts in the same row showed significant differences ($p < 0.05$).

where y is the MY, μ is the intercept, C_{pp} is the covariate coefficient of parity, C_{ii} is the covariate coefficient of DIM, C_{aa} is the covariate coefficient of additive effect, the C_{dd} is the covariate coefficient of dominance effect, and e is the residual standard error.

Results

The findings indicated a significant effect ($p < 0.05$) of SNP g.8946C > T on milk production. (Table 1). The milk production of the *CC* genotype at SNP g.8946C > T outperforms the *CT* and *TT* genotypes. The MY is not significantly influenced by the SNP g.8956G > A. The DIM in this study were 223 ± 58 days with a parity of 1.95 ± 0.74 . Meanwhile, the average milk production per population was 0.83 ± 0.37 kg/day.

The parity, DIM, additive effects, and dominance effects on the average MY are shown in Table 2. The data show that the MY is significantly ($p < 0.01$) influenced by parities and DIM. Data on the additive and dominance effect showed no significant differences between MY with the *C* allele and those with the *T* allele.

Table 3 shows the power analysis for SNP Effects on Milk Production Traits. Table 4 shows Haplotype Associations with MY in Sapera Goats. The power analysis revealed distinct differences between SNP1 and SNP2 in their associations with productive and reproductive traits. For SNP1, moderate-to-large effect sizes were observed in MY and parity, particularly in the comparisons between *CC* versus *CT* and *CC* versus *TT* genotypes. However, the current sample sizes were insufficient to achieve adequate statistical

Table 2. Additive and dominance effect of g.8946C > T, on MY (kg/day).

Parity	DIM	Additive	Dominance
0.185 ± 0.063**	0.002 ± 0.001**	0.044 ± 0.078	-0.045 ± 0.165

** $p < 0.01$

power, with most comparisons showing power below 0.6. For instance, MY showed an effect size of $d = 0.725$ for *CC* versus *CT*, yet only reached a power of 0.56, indicating that at least 51 animals per genotype group would be required to achieve 80% power. Similarly, parity exhibited moderate effect sizes (0.53–0.55), but observed power remained below 0.42. In contrast, DIM showed only small effect sizes across all genotype comparisons, with power below 0.20.

Discussion

This study aimed to investigate the impact of the *CSN2* exon 7 on milk production, focusing on the identified SNPs g.8946C > T and g.8956G > A. The g.8946C > T SNP was found to be a non-synonymous mutation that alters the amino acid sequence from alanine (GCA) to valine (GTA) at position 177. In contrast, the g.8956G > A SNP is a synonymous mutation, preserving the amino acid glutamine at position 180. This distinction among the mutations is significant, given that non-synonymous mutations are more likely to affect phenotypic traits due to altering protein structure and function. Functional differentiation is a concept of great biological significance. Non-synonymous mutations are more likely to affect protein conformation,

Table 3. Power analysis for SNP effects on milk production traits.

Trait	SNP	Comparison	Cohens_d	N1	N2	Power	Total N required
MY	g.8946 C > T	CC vs CT	0.725	13	28	0.558	62
MY	g.8946 C > T	CC vs TT	0.561	13	23	0.349	102
MY	g.8946 C > T	CT vs TT	-0.198	28	23	0.106	800
MY	g.8956 G > A	GA vs GG	-0.006	23	41	0.050	828454

Table 4. Haplotype associations with MY in Sapera goats.

Trait	Haplotype	N	Mean ± SE	p-value
MY	CC_GG	7	1.155 ± 0.212	0.212
MY	CC_GA	6	0.879 ± 0.109	0.212
MY	TT_GA	8	0.873 ± 0.159	0.212
MY	TT_GG	15	0.789 ± 0.060	0.212
MY	CT_GA	9	0.761 ± 0.091	0.212
MY	CT_GG	19	0.750 ± 0.085	0.212

stability, or intermolecular interactions, thereby influencing phenotypic traits.

Conversely, synonymous mutations tend to have reduced or context-dependent effects, often mediated through changes in codon usage or mRNA stability [18]. The presence of four established mutations in the *CSN2* exon 7, at amino acid residues 58, 166, 167, and 177 [19], as identified in previous research, further establishes the genetic heterogeneity in this region. The β -casein, which is encoded by *CSN2*, plays a significant role in milk's calcium transport and micelle-forming processes [14]. Structural modifications, such as the substitution of alanine with valine (Ala→Val), may influence hydrophobic interactions and the conformation of local structures, potentially leading to alterations in micelle dimensions and the efficiency of secretion. Such alterations can disrupt the equilibrium between the volume of milk produced and the partitioning of solids. Indeed, previous research has demonstrated that genetic variation within the *CSN2* gene is correlated with the compositional and technological attributes of milk across various goat breeds [12,13].

Consequently, the functional polymorphism g.8946C > T aligns with established biological mechanisms that connect casein variants to lactation performance. This study suggests practical value in using SNP g.8946C > T as a potential molecular marker. Interestingly, our findings align with earlier research by Deviandini et al. [16], who also identified the significance of the g. 8946C > T SNP in milk production traits. The prevalence of the CC genotype, particularly in Banat's White Dairy Goat Breeds, is 0.73 and is associated with superior dairy performance [20]. The broader literature further supports this result: in

Awassi sheep, *CSN2* genotypes were strongly linked to MY and composition [21,22], while in Sarda goats, casein loci have repeatedly been implicated in fat and protein yields [12]. Taken together, these data emphasize the importance of exon 7 as a hotspot for functional polymorphism within the casein cluster.

The investigation revealed that while the genotype had an observable influence on milk production, the additive and dominance effects associated with these SNPs were not statistically significant. This lack of highly additive or dominant effects suggests that other loci or environmental influences are more significant in regulating milk production. Additionally, the stronger effect of haplotypes at *CSN1S1* and *CSN3* compared to those at *CSN1S2* and *CSN2* underscores the complex interaction of several genetic factors in regulating milk traits. This level of complexity is also evident in the findings for the impact of the *CSN2* gene on milk protein and fat in Sarda and Awassi goat breeds, again supporting the role of several loci in overall milk production traits [12,21].

In addition, the significant effect of parity and DIM on milk production discovered in this study aligns with published literature. Parity increase is generally found to be associated with increased MY, as multiparous animals tend to exhibit improved lactation performance compared to primiparous animals [23]. They have improved physiological adaptation and lactation experience. Our results indicate that lactation stage, particularly in goats with four or more parities, increases total MY, further supporting this argument, which concurs with the finding of Gafsi et al. [24].

Furthermore, the outcomes in the first 100 days of lactation, with higher MYs, underscore the importance of first lactation performance, which is essential for achieving the highest overall milk production [25]. Genetic merit is key during the initial phase, the essence behind the need for genetic improvement initiatives, and the traits that support the first lactation [26]. Management practices, such as kidding season and feeding, have significant effects on dairy goat performance, interacting with parity and DIM. Optimistic nutritional management improves MY, consistency, and metabolic health, and multiparous goats also utilize feed more efficiently compared to primiparous goats [5].

In conclusion, this study brings important contributions to the genetic origin of milk production traits in goats. The contribution of the *CSN2* exon 7 gene and its SNPs to milk yield, in addition to the pivotal influence of parity and DIM, highlights the complex nature of dairy production. Future studies should continue to investigate these relationships, perhaps with increased sample sizes and phenotypic diversity to gain further insight into the intricate genetic architecture of milk production traits.

Two mutations were identified in this study, specifically at amino acid positions 177 and 180. In Czech Dairy Goat Breeds, it is known that the *CC* genotype in mutation 8946 has the highest frequency of 0.496 [27]. In Indian sheep, *CSN2* is known to have 15 *CSN2* protein variations and 21 non-synonymous SNPs [28]. The diversity of the *CSN2* gene in sheep is greater than in goats.

Although the genotype had an influence, the additive and dominance effects were not significant. Furthermore, Haplotypes at the *CSN1S1* and *CSN3* loci have a greater effect on dairy traits than those at the *CSN1S2* and *CSN2* loci [29]. The milk protein and fat composition in Sarada goats is influenced by the *CSN2* gene [12]. In Awassi goats, the *CA* genotype is linked to significant milk production of 165.2 ± 22.0 kg, with *CSN2* playing a crucial role [21]. *CSN1S1* and *CSN3* in Norwegian goats have an additive effect on fat percentage, protein percentage, and MY. Notably, the dominance effect is particularly significant in protein and fat percentage [30]. Another study concluded that the *CSN3* variants have a slight impact on daily milk production [31].

The study revealed that both parity and DIM had a significant impact on MY. The milk quantity is influenced by both parity and breed, as those that have given birth multiple times tend to yield a greater MY [22,32]. The extended lactation length of goats, especially those at parity ≥ 4 , leads to a notable increase in milk production [33]. Moreover, DIM had an impact on the MY. The initial 60 days of lactation demonstrated a higher MY, which can be attributed to the genetic merit and the sustainable milk production in Syrian Damascus goats [34].

Conclusion

The *CC* genotype yields more milk than other genotypes. However, no additive or dominant effects are observed. A large quantity of samples and phenotypes is required for the assessment of the g.8946C > T SNP. Additionally, parity and DIM have a strong impact on MY, indicating that animals with higher parity or longer lactation periods tend to produce more milk. This study highlights the importance of understanding both genetic variation and non-genetic factors, such as parity and DIM, in improving milk production

performance. The variation in the *CSN2* gene, particularly SNP g.8946C > T, can serve as a reference for genetic selection to enhance milk production in the future. The identification of g.8946C > T as a potentially informative marker provides a valuable reference for marker-assisted and genomic-assisted selection in tropical dairy goat systems.

List of abbreviations

ANOVA, analysis of variance; CSN, Casein; DIM, days in milk; DNA, deoxyribonucleic acid; EDTA, Ethylenediaminetetraacetic acid; PCR, polymerase chain reaction; PE, Etawah grade; SNP, single-nucleotide polymorphism.

Acknowledgment

The authors thank the Indonesian Research Institute for Animal Production for the funding. This work was supported by the Ministry of Agriculture of the Republic of Indonesia through the Agency of Agricultural Research and Development, with the grant number No. 4585. SDA.502/051/C/C1/APBN. The authors also thank Ms Anne Sukmara and Mr. Asep Priyadi for their important contribution to this study.

Conflicts of interest

The authors declare that they have no competing interests.

Authors' contributions

SA: Funding acquisition, conceptualization, and methodology. FS, SS, NA: Data curation, formal analysis, and writing – original draft. CH, DA, ZM: Validation, investigation, and data curation. AA, TA, GA: Validation, investigation, and writing – original draft. LP, DY, WP: data curation, methodology, and validation. SR, NP: Validation, writing – original draft, and writing – review. The final manuscript was read and approved by all authors.

REFERENCES

- [1] Navamniraj KN, Sivasabari K, Indu JA, Krishnan D, Anjali MR, Akhil PR, et al. Beneficial impacts of goat milk on the nutritional status and general well-being of human beings: anecdotal evidence. *J Exp Biol Agric* 2023; 11(1):1-5; [https://doi.org/10.18006/2023.11\(1\).1.15](https://doi.org/10.18006/2023.11(1).1.15)
- [2] Panta R, Paswan VK, Gupta PK, Kohar DN. Goat's milk (GM), a booster to human immune system against diseases. In: Kukovics S, editor. *Goat Science - Environment, Health and Economy*. IntechOpen, London, United Kingdom, 2021; <https://doi.org/10.5772/intechopen.97623>
- [3] Sumarmono J. Current goat milk production, characteristics, and utilization in Indonesia. *IOP Conf Ser Earth Environ Sci* 2022; 1041: 012082; <https://doi.org/10.1088/1755-1315/1041/1/012082>
- [4] Ningsih DR, Zaini M. Analisis usaha susu kambing di XYZ. *J Manaj Agribisnis Terapan* 2023; 1(1):1-8.

[5] Praharani L, Anggraeni A, Rusdiana S. Milk production and lactation length of F2 Anglo Nubian × Etawah grade does. IOP Conf Ser Earth Environ Sci 2021; 788:012006; <https://doi.org/10.1088/1755-1315/788/1/012006>

[6] Susilorini TE, Wulandari D, Furqon A, Septian WA, Saputra F, Suyadi S. Genetic diversity of various goat breeds in East Java based on DNA microsatellite Markers. Trop Anim Sci J 2022; 45(3):247-54; <https://doi.org/10.5398/tasj.2022.45.3.247>

[7] Suyadi S, Murtika IL, Susilorini TE, Septian WA, Saputra F, Furqon A. Genetic diversity of goats in East Java through analysis of the cytochrome B and cytochrome oxidase I genes in mitochondrial DNA. Small Ruminant Res 2022; 209:106659; <https://doi.org/10.1016/j.smallrumres.2022.106659>

[8] Erduran H, Dag B. Determination of factors affecting milk yield, composition and udder morphometry of hair and cross-bred dairy goats in a semi-intensive system. J Dairy Res 2021; 88(3):265-9; <https://doi.org/10.1017/S0022029921000637>

[9] Akshit FNU, Deshwal GK, Sharma H, Kumar P, Maddipatla DK, Singh MP, et al. Technological challenges in the production of goat milk products and strategies to overcome them: a review. Int J Food Sci Technol 2024; 59(1):6-16; <https://doi.org/10.1111/ijfs.16782>

[10] Muñoz-Tebar N, Muñoz-Bas C, Viuda-Martos M, Sayas-Barberá E, Pérez-Alvarez JA, Fernández-López J. Fortification of goat milk yogurts with date palm (*Phoenix dactylifera* L.) coproducts: impact on their quality during cold storage. Food Chem 2024; 454:139800; <https://doi.org/10.1016/j.foodchem.2024.139800>

[11] Thakur R, Biswal P, Sari TP, Kumar D, Sagar NA, Bhardwaj S, et al. Therapeutic effect of goat milk and its value-addition: current status and way forward. J Food Sci Technol 2024; 61:1621-31; <https://doi.org/10.1007/s13197-023-05923-9>

[12] Dettori ML, Pazzola M, Noce A, Landi V, Vacca GM. Variations in casein genes are associated with milk protein and fat contents in Sarda goats (*Capra hircus*), with an important role of *CSN1S2* for milk yield. Animals 2023; 14(1):56; <https://doi.org/10.3390/ani14010056>

[13] Breunig S, Crooijmans RPMA, Bovenhuis H, Hettinga K, Bijl E. Linking variation in the casein fraction and salt composition to casein micelle size in milk of Dutch dairy goats. J Dairy Sci 2024; 107(9):6474-86; <https://doi.org/10.3168/jds.2023-24548>

[14] Rahmatalla SA, Arends D, Brockmann GA. Review: genetic and protein variants of milk caseins in goats. Front Genet 2022; 13:995349; <https://doi.org/10.3389/fgene.2022.995349>

[15] Cosenza G, Albarella S, D'Anza E, Iannuzzi A, Selvaggi M, Pugliano M, et al. A new AS-PCR method to detect *CSN201* allele, genotyping at Ca-sensitive casein loci and milk trait association studies in autochthonous Lazio goats. Animals 2023; 13(2):239; <https://doi.org/10.3390/ani13020239>

[16] Deviandini G, Noor RR, Taufik E, Asmarasari SA. Analysis of *CSN2* exon 7 gene diversity and its association with Sapera goat milk composition. J Indones Trop Anim Agric 2023; 48(3):161-8; <https://doi.org/10.14710/jitaa.48.3.161-168>

[17] R Core Team. R: a language and environment for statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023.

[18] Liu Y, Yang Q, Zhao F. Synonymous but not silent: the codon usage code for gene expression and protein folding. Annu Rev Biochem 2021; 90:375-401; <https://doi.org/10.1146/annurev-biochem-071320-112701>

[19] Deviandini G, Noor RR, Taufik E, Asmarasari SA. Polymorphism of *CSN2* gene exon 7 in Indonesian dairy goat breeds. Buletin Peternak 2023; 47(3):168-71; <https://doi.org/10.21059/buletinpeternak.v47i3.84098>

[20] Kusza S, Ilie DE, Sauer M, Nagy K, Patras I, Gavojdian D. Genetic polymorphism of *CSN2* gene in Banat White and Carpathian goats. Acta Biochim Pol 2016; 63(3):577-80; https://doi.org/10.18388/abp.2016_1266

[21] Al-Amareen AH, Jawasreh KI. Single and combined effects of *CSN1S1* and *CSN2*-casein genes on Awassi sheep milk quantity and quality. Vet World 2022; 15(2):435-41; <https://doi.org/10.14202/vetworld.2022.435-441>

[22] Khaleel I, Jawasreh, Jalal E, Alkass. Genetic and non-genetic parameters for milk production traits of Damascus goat in Jordan. Iraqi J Agric Sci 2023; 54(1):156-60; <https://doi.org/10.36103/ijas.v54i1.1687>

[23] Ribeiro LPS, Patra AK, Puchala R, Merkel RC, Goetsch AL. Interaction between gestational plane of nutrition and lactation diet composition on lactation performance of Alpine goats of different parities. Sci Rep 2023; 13:16211; <https://doi.org/10.1038/s41598-023-43450-x>

[24] Gafsi N, Martin O, Bidan F, Grimard B, Pullet L. Diversity of performance patterns in dairy goats: multi-scale analysis of the lactation curves of milk yield, body condition score and body weight. Peer Community J 2024; 4:1-29; <https://doi.org/10.24072/pcjournal.449>

[25] Pizarro IMG, Navas GFJ, Landi V, León JJM, Delgado BJV, Fernández ÁJ, et al. Software-automatized individual lactation model fitting, peak and persistence, and Bayesian criteria comparison for milk yield genetic studies in Murciano-Granadina goats. Mathematics 2020; 8(9):1505; <https://doi.org/10.3390/math8091505>

[26] Aboul-Naga AM, Abdel-Shafy H, Mohamed SA, Ahmed RM. Genetic insights and prospects of Egyptian-Nubian (Zaraibi) goats. Trop Anim Health Prod 2025; 57:210; <https://doi.org/10.1007/s11250-025-04433-4>

[27] Sztanková Z, Kysel'ová J, Kott T, Kottová E. Technical note: detection of the C allele of β-casein (*CSN2*) in Czech dairy goat breeds using LightCycler analysis. J Dairy Sci 2008; 91(10):4053-67; <https://doi.org/10.3168/jds.2007-0747>

[28] Ali M, Gautam D, Deepika S, Meena AS, Chera J, De S. The genetic variations in *CSN2* gene of Indian sheep breeds affect its protein stability and function. Small Ruminant Res 2022; 207:106612; <https://doi.org/10.1016/j.smallrumres.2022.106612>

[29] Dincel D, Ardicli S, Samli H, Vatansenver B, Balci F. Identification of the frequency of *CSN1S2* gene alleles and the effects of these alleles and parity on milk yield and composition in Saanen goats. Large Anim Rev 2021; 27(2):91-6.

[30] Gašper J. *CSN1S1* genotype and the effect of the F allele on milk characteristics in Slovak White Shorthaired goats. Acta Fytotech Zootech 2024; 27(2):118-24; <https://doi.org/10.15414/afz.2024.27.02.118-124>

[31] Mahmoudi P, Rostamzadeh J, Rashidi A, Zergani E, Razmkabir M. A meta-analysis on association between *CSN3* gene variants and milk yield and composition in cattle. Anim Genet 2020; 51(3):369-81; <https://doi.org/10.1111/age.12922>

[32] Boshoff M, Lopez-Villalobos N, Andrews C, Turner SA. Modeling daily yields of milk, fat, protein, and lactose of New Zealand dairy goats undergoing standard and extended lactations. J Dairy Sci 2024; 107(3):1500-9; <https://doi.org/10.3168/jds.2023-23926>

[33] Almasri O, Abou-Bakr S, Ibrahim MAA, Asaad Z, Ghoush M, Awad MAA. Lactation curve and milk production traits of Syrian Damascus goats. Egypt J Anim Prod 2023; 60(1):7-16; <https://doi.org/10.21608/ejap.2023.177189.1051>

[34] Al-Barzinji YM, Zainal FK. Genetic evaluation of milk production traits in local goat. Iraqi J Agric Sci 2023; 54(6):1548-56; <https://doi.org/10.36103/ijas.v54i6.1855>