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ABSTRACT

Objective: The purpose of our study was to investigate the effect of chicken interferon on the 
intestinal microbiota of broiler chickens.
Materials and Methods: The study used next-generation sequencing on the Ion Torrent prag-
matic general multicast platform to target the V3 16S ribosomal ribonucleic acid hypervariable 
region gene, allowing us to analyze in detail changes in the composition of the broiler chicken 
microbiome.
Results: Forty-one bacterial genera were identified in the studied groups of broilers. The high-
est abundance in both groups was observed for Lactobacillus, which was 31.08% ± 6.52 in the 
control group and 36.08% ± 7.25 in the interferon group. There was no clustering between the 
microbiome communities of the groups studied. We found a decrease or complete absence of 
Escherichia–Shigella, Eubacterium fissicatena group, Lachnospiraceae CHKCI001, and Pediococcus 
in the interferon-treated broiler group compared to the control group and an increase in the num-
ber of genera Ruminococcaceae CAG-352 and Turicibacter in the interferon group.
Conclusion: A decrease in E.–Shigella may indicate normalization of the intestinal microbiota 
of broilers, and it can also be concluded that the introduction of interferon helps to suppress 
opportunistic bacteria. In the interferon group, a sharp increase in the number of Turicibacter was 
observed. Representatives of this genus are among the most common members in the intestines 
of broilers.
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Introduction

In the economics of the global market, poultry makes up 
a huge percentage of the protein source for the modern 
human diet and is also a common model animal for basic 
and applied research [1].

It is known that harmful environmental factors can shift 
the microbiome homeostasis of newborn chicks, which in 
turn leads to excessive growth of pathogens and the devel-
opment of dysbiosis in broilers. Infectious diseases are 
also the main cause of mortality in chickens. The immune 
system plays an important role in protecting the body from 
infectious agents [2]. Thus, understanding the connection 
between microbiota and immune functions of organisms is 
one of the key tasks of modern research [3].

In the commercial breeding of broiler chickens, anti-
microbial growth stimulants are widely used, as well as 
antibiotics in small doses to increase feed conversion 
efficiency [4]. However, over the years, many concerns 
have arisen about the overuse of antibiotics, leading to 
regulatory recommendations for their use. Thanks to 
this, several promising alternative drugs have emerged, 
which include modulation of the chicken gastrointesti-
nal microbiome with prebiotics and probiotics, as well as 
antimicrobials [5,6].

It is known that interferon production is considered the 
most important innate immune response and the first line 
of defense against viral infections [7]. The antiviral activity 
of chicken interferon has been demonstrated in response 
to some infections caused by various viruses [8].
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However, even though there is evidence that the intes-
tinal microbiota can affect interferon production [9], there 
are no data on whether the introduction of interferon into 
the body can change the composition of the intestinal 
microbiota. In the therapy of farm animals, one of the main 
methods remains immunocorrection. The mechanisms of 
the influence of this therapy on the animal remain poorly 
studied. In addition, studies aimed at studying the effect of 
interferon therapy on the intestinal microbiota of chickens 
have not been carried out previously. Thus, the purpose of 
this work was to study the ways of action of interferons 
on the bacterial composition of the intestinal microbiota 
of broiler chickens at early stages of development. Thus, 
this study aimed to investigate the pathways of interferon 
action on the bacterial composition of the gut microbiota 
of broiler chickens at early stages of development.

Materials and Methods

Ethical approval

Animal experiments were approved by the Ethical 
Commission of the All-Russian Veterinary Research 
Institute of Pathology, Pharmacology, and Therapy 
(VNIVIPFiT), Protocol No. 1-02/23, dated February 
10, 2023. The experimental conditions complied with 
the requirements of the European Convention for the 
Protection of Vertebrates Used for Experiments or Other 
Scientific Purposes (ETS No. 123, Strasbourg, 1986).

Study plan

The object of the research was broiler chickens of the 
Cobb-500 cross. Broilers (24 birds) were divided into 
two equal groups, one of which was administered inter-
feron. The birds of the experimental group were given 
the avian recombinant alpha interferon (structural and 
functional analog of endogenous interferon-alpha-2b) 
intranasally at a dose of 0.1 ml (1,000 IU/kg) per 1 kg of 
body weight, one day before vaccination (the age of the 
chickens was 13 days). Feces were collected after 30 days 
of interferon introduction under sterile conditions from 
the large intestine and immediately frozen at −20°С. The 
research was carried out based on the vivarium of the 
Federal State Budgetary Scientific Institution “All-Russian 
Research Veterinary Institute of Pathology, Pharmacology, 
and Therapy” within the framework of the state theme 
“Study the role of signaling cytokines in the pathogenesis 
of immunodeficiencies in birds and develop methodolog-
ical approaches to the creation of means and methods of 
prevention.”

Deoxyribonucleic acid extraction

Deoxyribonucleic acid (DNA) was isolated using the HiPure 
Microbiome DNA Kit (Magen, China). To 100 μg of a sam-
ple, 150 μl of Buffer DRB was added, mixed, and then incu-
bated for 10 min. The 10 µl of DNase I was added, mixed, 
and then incubated for 20 min. Then, everything was 
transferred to new tubes with particles for resuspension. 
The 50 μl of Buffer ES was added and lysed. Centrifuge and 
transfer 400 μl of the supernatant into new tubes. 

Add 400 µl of Buffer DL and 20 µl of Proteinase K. Vortex 
and incubate. The 400 μl of ethanol (96%) was added and 
mixed. Transfer 650 µl to a HiPure DNA Mini Column I 
placed in a collection tube, centrifuge, and discard the fil-
trate. Repeat the step twice. The 650 µl of Buffer GW1 was 
added, and the filtrate was centrifuged to remove it. We 
repeated this step with Buffer GW2. Place the column in a 
new 1.5 ml tube, add 50 µl Tris-EDTA buffer, incubate, and 
centrifuge.

Sequencing

Sequencing was performed on the Ion Torrent pragmatic 
general multicast (PGM) platform. The V3 region of the 
bacterial 16S ribosomal ribonucleic acid gene was chosen 
as the target segment of bacterial DNA. Bacterial DNA was 
isolated by real-time polymerase chain reaction (PCR) 
using universal primers: 337F (5’-GAC TCC TAC GGG AGG 
CWG CAG-3’); 518R (5’-GTA TTA CCG CGG CTG CTG G-3’). 
Amplified using 5X ScreenMix-HS (Evrogen, Russia) with 
the protocol: denaturation at 94°C for 4 min, 37 cycles: 
94°C for 30 sec; 59°C for 30 sec; and 72°C for 30 sec, with 
final elongation at 72°C for 5 min. PCR products were puri-
fied with AMPure XP magnetic beads (Beckman Coulter, 
Life Sciences).

Further preparation of libraries was carried out with a 
commercial kit of NEBNext Fast DNA Library Prep reagents 
(New England Biolabs, USA). The protocol consists of the 
following steps: stripping the ends; connecting adapters; 
purification of finished libraries with AMPure XP magnetic 
particles (Beckman Coulter, Life Sciences); measurement 
of concentrations of purified libraries by quantitative 
PCR (qPCR) with a set of reagents Library Quantification 
Kit Ion Torrent Platforms (Kapa Biosystems, USA) with a 
protocol: primary denaturation at 95°C for 5 min, then 35 
cycles: denaturation at 95°C for 30 sec; and elongation at 
60°C for 45 sec. Analysis of melting curves 65–95 was also 
carried out, performing emulsion PCR using the OneTouch 
2 device (Thermo Fisher Scientific, USA).

Statistical analysis

The Shannon index was used to calculate alpha diversity as 
well as to assess the overall representation and diversity 
of bacterial species in each study group. Alpha diversity 



http://bdvets.org/javar/	 � 489Burakova et al. / J. Adv. Vet. Anim. Res., 12(2): 487–496, June 2025

differences were evaluated using the Wilcoxon rank sum 
test, adjusted by the false discovery rate method.

The microbiome’s intergroup similarity was evaluated 
through principal coordinate analysis using the Bray–
Curtis difference. The statistical significance of the dif-
ferences in the resulting distances was determined using 
permutational multivariate analysis of variance [10].

The MaAsLin2 package for R was used to conduct differ-
ential abundance analysis [11]. An adjusted p < 0.05 was 
considered statistically significant.

Results

As a result of the sequencing performed on the Ion Torrent 
PGM platform, 41 bacterial genera were identified in the 
studied groups of broilers. The content of 25 bacterial 
genera was less than 1% for one of the study groups; they 
were grouped as “Others.” Figure 1 shows the top 16 bacte-
rial genera for the study groups (Supplementary Table 1).

The highest abundance in both groups was observed 
for Lactobacillus, which was 31.08% ± 6.52% in the con-
trol group and 36.08% ± 7.25% in the interferon group. 
The distribution of the other bacteria differed between 
the groups so that in the control group they were as fol-
lows: Ruminococcus torque group 15.42% ± 2.16%, Blautia 
8.25% ± 1.52%, Erysipelatoclostridium 6.33% ± 1.02%, 
Stomatobaculum 4.08% ± 1.16%, Faecalibacterium 4.08% 
± 2.48%, Enterococcus 4.0% ± 2.92%, Pediococcus 3.42% ± 
2.70%, Paeniclostridium 2.50% ± 0.73%, Eubacterium fis-
sicatena group 2.33% ± 0.67%, Sellimonas 1.67% ± 0.66%, 
Escherichia–Shigella 1.42% ± 0.70%, Monoglobus 1.17% ± 
0.67%, and Clostridium innocuum group 1.08% ± 0.73%. 
The frequency of Lachnospiraceae GCA-900066575 and 
Turicibacter was less than 1% in the control group. In the 
interferon group, the following distribution was observed: 
Paeniclostridium 11.67% ± 4.51%, R. torques group 
11.50% ± 0.93%, Erysipelatoclostridium 8.83% ± 1.96%, 
Blautia 6.83% ± 0.89%, Turicibacter 5.50% ± 2.40%, 

Figure 1. Bacterial composition of the study groups at the genus level.
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Stomatobaculum 2.92% ± 0.62%, Monoglobus 1.83% ± 
0.71%, Faecalibacterium 1.58% ± 0.45%, Lachnospiraceae 
GCA-900066575 1.42% ± 0.38%, Enterococcus 1.25% ± 
0.72%, and Sellimonas 1.08% ± 0.23%. The abundance of 
E. fissicatena group, C. innocuum group, Pediococcus, and 
E.–Shigella was less than 1% (Supplementary Table 2; 
Supplementary Fig. 1).

Figure 2 shows the alpha diversity scores for the study 
groups. The Shannon index, which describes the alpha diver-
sity of the microbiome, was 2.16 ± 0.16 for the control group 

and 1.99 ± 0.12 for the interferon group (Supplementary 
Table 3; Supplementary Fig. 2). Thus, the microbiome of the 
control group was richer than that of the interferon group, 
but this difference was not statistically significant (p = 0.16). 
Figure 3 shows the beta diversity scores for the study groups. 
Figure 3 shows that there was no clustering between the 
microbiome communities of the groups studied (p = 0.45).

Differential abundance analysis showed the presence 
of statistically significant differences between the studied 
groups for six bacteria (Fig. 4).

Figure 2. Indicator of intragroup diversity of the microbiome of the study groups.
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Figure 3. Indicators of intergroup microbiome diversity of the study groups.

Figure 4. Differences in the abundance of bacterial genera between the study groups.
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We found a decrease or complete absence of E.–Shigella 
(0% vs. 1.42% ± 0.70, p = 0.02), E. fissicatena group (0.92% ± 
0.15 vs. 2.33% ± 0.67, p = 0.02), Lachnospiraceae CHKCI001 
(0.17% ± 0.11 vs. 0.92% ± 0.26, p = 0.01), and Pediococcus 
(0.08% ± 0.07 vs. 3.42% ± 2.70, p = 0.04) in the interfer-
on-treated broiler group compared to the control group 
and an increase in the number of genera Ruminococcaceae 
CAG-352 (0.58% ± 0.26 vs. 0%, p = 0.02) and Turicibacter 
(5.50% ± 2.40 vs. 0.25% ± 0.13) in the interferon group, 
p = 0.02). 

Discussion

This research aimed to study the effect of interferon on 
the gut microbiome of broiler chickens. Even though 
treatment with immunomodulatory substances is the 
most widely used in agricultural animal husbandry, there 
are no studies aimed at studying the mechanisms of the 
effect of species-specific interferons on the gut microbi-
ota of chickens or any other farm animals. However, it is 
known that intestinal bacteria and their metabolites can 
influence interferon signaling pathways [12]. This empha-
sizes the high significance of our study, demonstrating a 
link between interferon treatment and bacterial changes 
in the gut of chickens. We have shown an indirect positive 
role of interferons on the gut of animals, which in turn may 
have a positive effect on the health of birds. In addition, 
we found bacterial taxa (E.–Shigella, E. fissicatena group, 
Lachnospiraceae, Pediococcus Ruminococcaceae CAG-352, 
and Turicibacter) that colonized the intestines of interfer-
on-treated chickens to varying degrees.

The abundance of E.–Shigella decreases relative to the 
control in the interferon group of broiler intestinal micro-
biota. Previous studies have indicated that E.–Shigella was 
one of the dominant genera of the bacterial community in 
the cecum of newly hatched chicks, but their abundance 
decreases with age [13]. It has also been demonstrated 
that E.–Shigella is a group of opportunistic bacteria that 
can destroy the intestinal structure and thereby exert 
pro-inflammatory activity through the production of vir-
ulence factors [14].

It was revealed that this bacterial species negatively 
correlates with growth as well as with fat digestibility in 
broilers. In turn, the addition of moderate antibiotics and 
additives with organic acids can suppress the number of 
E.–Shigella [15]. Again, it was found that vaccinated birds 
had a lower relative abundance of the bacterial genus E.–
Shigella, which can negatively impact chicken health and 
produce foodborne illnesses [16]. A review of the litera-
ture data showed that a decrease in this bacterial genus 
may indicate normalization of the intestinal microbiota of 
broilers, and it can also be concluded that the addition of 
interferon helps to suppress opportunistic bacteria.

Bacteria of the E. fissicatena group are capable of pro-
ducing butyrate, which not only maintains normal intesti-
nal permeability but also has an anti-inflammatory effect 
[17]. This genus has been shown to play a protective role 
in the pathogenesis of endocarditis [18].

In turn, the E. fissicatena group exhibits a specific 
response to a high-fat diet, demonstrating a strong asso-
ciation with host obesity and associated metabolic dis-
orders [19]. According to the results of our study, it was 
shown that the number of bacteria of the genus E. fissicat-
ena group decreased in the interferon group relative to the 
control.

It is known that an increase in the abundance of 
Lachnospiraceae CHKCI001 bacteria, representatives of 
the Lachnospiraceae family, producing SCFA, can maintain 
homeostasis of the intestinal microbiota and also affect the 
growth of broilers [20,21]. In several studies, an increase 
in this bacterium was observed in chickens kept on a 
multi-enzyme diet with the addition of wheat-soy flour or 
in combination with inactivated lactobacilli [22], as well 
as with the inclusion of antibacterial peptides in the diet 
[23]. Despite the literature data, according to the results of 
our study, it was found that the introduction of interferon 
inhibited the growth of Lachnospiraceae CHKCI001.

Similar results were also found for Pediococcus sp. 
which is considered a beneficial genus for the organism. 
According to the results of the research work by Hamid 
et al. [24], it was noted that broiler chickens fed with 
feed supplemented with Pediococcus had a reduced abun-
dance of E. coli in the ileum compared to the control [24]. 
Additionally, Lee et al. [25] reported that supplements 
containing Pediococcus can have a negative effect on the 
growth of pathogenic bacteria and thus protect birds [25]. 
Thus, it is advisable to delve into the study of the inhibitory 
effect of interferon on the abundance of Pediococcus in the 
intestinal microbiome of broilers to confirm and explain 
this effect on the organism. 

It was noted that Ruminococcaceae CAG-352 bacteria 
densely populated the microbiome of laying hens with a 
low response to vaccination against infectious bronchitis 
virus [26]. The data of our study also demonstrated an 
increase in the abundance of the genus Ruminococcaceae 
CAG-352 in the interferon group. It was previously estab-
lished that the bacterial species Turicibacter is one of 
the most numerous in the intestinal microbiota of broil-
ers [27]. However, this genus has been repeatedly noted 
as pathogenic and has also been associated with various 
pathological conditions in the body [28]. This is con-
firmed in the work of Song et al. [29], where an increase 
in this genus was noted after antibiotic therapy in broiler 
chickens [29]. Perhaps interferon has a similar effect on 
Turicibacter bacteria because, according to the results of 
our study, an increase in the abundance was noted in the 
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interferon group relative to the control. Therefore, the role 
of Turicibacter in the broiler microbiome remains unclear.

We can assume that interferon indirectly affects the 
body by influencing the number of phages capable of infect-
ing various bacterial taxa. The ability of interferons to regu-
late the intestinal virome has been previously reported.

There are two main limitations in our study that could 
be addressed in the future. First, the study focused on 
studying only the bacterial composition; for a more com-
plete characterization of the changes, it is necessary to add 
histological methods, as well as virome studies. Second, the 
limitation is the sample size of the study groups. To more 
accurately assess the effect of interferon on the intestinal 
microbiome of chickens, studies on larger groups from dif-
ferent regions are needed.

Conclusion

It was revealed that the introduction of interferon intrana-
sally can change the composition of the microbiota of the 
intestine of broilers. Lactobacillus bacteria were the most 
abundant in the large intestine of broilers in both groups 
studied. We found a decrease or complete absence of E.–
Shigella, E. fissicatena group, Lachnospiraceae CHKCI001, 
and Pediococcus in the interferon-treated broiler group 
compared to the control group and an increase in the num-
ber of genera Ruminococcaceae CAG-352 and Turicibacter 
in the interferon group. 
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Supplementary Material

Supplementary Table 1.  Relative abundance of top bacterial genera in control and 
interferon-treated groups.

Bacterial genus Control (%) Interferon (%)

Lactobacillus 31.08 36.08

Ruminococcus torques group 15.42 11.5

Blautia 8.25 6.83

Erysipelatoclostridium 6.33 8.83

Stomatobaculum 4.08 2.92

Faecalibacterium 4.08 1.58

Enterococcus 4.0 1.25

Pediococcus 3.42 <1

Paeniclostridium 2.5 11.67

Eubacterium fissicatena 2.33 <1

Sellimonas 1.67 1.08

Escherichia-Shigella 1.42 <1

Monoglobus 1.17 1.83

Clostridium innocuum 1.08 <1

Lachnospiraceae GCA-900066575 <1 1.42

Turicibacter <1 5.5

Supplementary Table 2.  Statistically significant changes in bacterial genera abundance.

Bacterial genus Control (%) Interferon (%) p-value

Escherichia-Shigella 1.42 0.0 0.02

Eubacterium fissicatena group 2.33 0.92 0.02

Lachnospiraceae CHKCI001 0.92 0.17 0.01

Pediococcus 3.42 0.08 0.04

Ruminococcaceae CAG-352 0.0 0.58 0.02

Turicibacter 0.25 5.5 0.02

Supplementary Table 3.  Alpha diversity index (Shannon index) between groups.

Group Shannon index (Mean ± SD) p-value

Control 2.16 ± 0.16 0.16

Interferon 1.99 ± 0.12 ns
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Supplementary Figure 1.  Heatmap of differential abundance in key genera.

Supplementary Figure 2.  Alpha diversity (Shannon Index) between groups.


